thesven commited on
Commit
16e433b
1 Parent(s): 29655fa
Files changed (2) hide show
  1. app.py +57 -60
  2. requirements.txt +2 -1
app.py CHANGED
@@ -1,77 +1,74 @@
1
- import gradio as gr
2
  import spaces
 
3
  import torch
4
- from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
5
- import threading
 
 
 
 
 
 
 
 
 
 
6
 
7
- model_to_use = "thesven/Llama3-8B-SFT-code_bagel-bnb-4bit"
 
8
 
9
- # Initialize global variables for the tokenizer and model
10
- tokenizer = None
11
- model = None
12
 
13
  @spaces.GPU
14
- def load_model():
15
- global tokenizer, model
16
- model_name_or_path = model_to_use
17
 
18
- # BitsAndBytesConfig for loading the model in 4-bit precision
19
- bnb_config = BitsAndBytesConfig(
20
- load_in_4bit=True,
21
- bnb_4bit_quant_type="nf4",
22
- bnb_4bit_compute_dtype="bfloat16",
23
- )
24
 
25
- tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
26
- model = AutoModelForCausalLM.from_pretrained(
27
- model_name_or_path,
28
- device_map="auto",
29
- trust_remote_code=True,
30
- quantization_config=bnb_config
 
 
 
31
  )
32
- model.pad_token_id = model.config.eos_token_id
33
-
34
- return "Model loaded and ready!"
35
 
36
- def send_message(message, history):
37
- global tokenizer, model
38
- if tokenizer is None or model is None:
39
- return history # Return the existing history if the model is not loaded
40
 
41
- # Add the user's message to the history
42
- history.append(("User", message))
43
-
44
- # Generate the model's response
45
- input_text = " ".join([msg for _, msg in history])
46
- input_ids = tokenizer(input_text, return_tensors='pt').input_ids.cuda()
47
- output = model.generate(inputs=input_ids, max_new_tokens=50)
48
- generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
49
-
50
- # Add the model's response to the history
51
- history.append(("Bot", generated_text))
52
 
53
- return history
 
 
 
54
 
55
- def initialize():
56
- # Function to run the model loading in a separate thread
57
- threading.Thread(target=load_model).start()
58
 
59
- with gr.Blocks() as demo:
60
- gr.Markdown("# Chat with the Model")
61
-
62
- status_text = gr.Textbox(label="Status", value="Loading model, please wait...")
63
- send_button = gr.Button("Send", interactive=False) # Disable the send button initially
64
-
65
- chatbot = gr.Chatbot()
66
- message = gr.Textbox(label="Your Message")
67
-
68
- def enable_send_button():
69
- send_button.interactive = True
70
- status_text.value = "Model loaded and ready!"
71
 
72
- demo.load(_js="initialize(); enable_send_button();")
73
- send_button.click(send_message, inputs=[message, chatbot], outputs=chatbot)
74
-
75
- initialize() # Start model initialization on app load
 
 
 
 
 
 
 
 
76
 
77
  demo.launch()
 
 
1
  import spaces
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
3
  import torch
4
+ import os
5
+ import gradio as gr
6
+ import sentencepiece
7
+
8
+
9
+ os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:120'
10
+ model_id = "thesven/Llama3-8B-SFT-code_bagel-bnb-4bit"
11
+ tokenizer_path = "./"
12
+
13
+ DESCRIPTION = """
14
+ # thesven/Llama3-8B-SFT-code_bagel-bnb-4bit
15
+ """
16
 
17
+ tokenizer = AutoTokenizer.from_pretrained(model_id, device_map="auto", trust_remote_code=True)
18
+ model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)
19
 
20
+ def format_prompt(user_message, system_message="You are an expert developer in all programming languages. Help me with my code. Answer any questions I have with code examples."):
21
+ prompt = f"<|im_start|>assistant\n{system_message}<|im_end|>\n<|im_start|>\nuser\n{user_message}<|im_end|>\nassistant\n"
22
+ return prompt
23
 
24
  @spaces.GPU
25
+ def predict(message, system_message, max_new_tokens=600, temperature=3.5, top_p=0.9, top_k=40, do_sample=False):
26
+ formatted_prompt = format_prompt(message, system_message)
 
27
 
28
+ input_ids = tokenizer.encode(formatted_prompt, return_tensors='pt')
29
+ input_ids = input_ids.to(model.device)
 
 
 
 
30
 
31
+ response_ids = model.generate(
32
+ input_ids,
33
+ max_length=max_new_tokens + input_ids.shape[1],
34
+ temperature=temperature,
35
+ top_p=top_p,
36
+ top_k=top_k,
37
+ no_repeat_ngram_size=9,
38
+ pad_token_id=tokenizer.eos_token_id,
39
+ do_sample=do_sample
40
  )
 
 
 
41
 
42
+ response = tokenizer.decode(response_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True)
43
+ truncate_str = "<|im_end|>"
44
+ if truncate_str and truncate_str in response:
45
+ response = response.split(truncate_str)[0]
46
 
47
+ return [("bot", response)]
 
 
 
 
 
 
 
 
 
 
48
 
49
+ with gr.Blocks() as demo:
50
+ gr.Markdown(DESCRIPTION)
51
+ with gr.Group():
52
+ system_prompt = gr.Textbox(placeholder='Provide a System Prompt In The First Person', label='System Prompt', lines=2, value="ou are an expert developer in all programming languages. Help me with my code. Answer any questions I have with code examples.")
53
 
54
+ with gr.Group():
55
+ chatbot = gr.Chatbot(label='thesven/Llama3-8B-SFT-code_bagel-bnb-4bit')
 
56
 
57
+ with gr.Group():
58
+ textbox = gr.Textbox(placeholder='Your Message Here', label='Your Message', lines=2)
59
+ submit_button = gr.Button('Submit', variant='primary')
 
 
 
 
 
 
 
 
 
60
 
61
+ with gr.Accordion(label='Advanced options', open=False):
62
+ max_new_tokens = gr.Slider(label='Max New Tokens', minimum=1, maximum=55000, step=1, value=4056)
63
+ temperature = gr.Slider(label='Temperature', minimum=0.1, maximum=4.0, step=0.1, value=1.2)
64
+ top_p = gr.Slider(label='Top-P (nucleus sampling)', minimum=0.05, maximum=1.0, step=0.05, value=0.9)
65
+ top_k = gr.Slider(label='Top-K', minimum=1, maximum=1000, step=1, value=40)
66
+ do_sample_checkbox = gr.Checkbox(label='Disable for faster inference', value=True)
67
+
68
+ submit_button.click(
69
+ fn=predict,
70
+ inputs=[textbox, system_prompt, max_new_tokens, temperature, top_p, top_k, do_sample_checkbox],
71
+ outputs=chatbot
72
+ )
73
 
74
  demo.launch()
requirements.txt CHANGED
@@ -1,4 +1,5 @@
1
  accelerate
2
  bitsandbytes
3
  transformers
4
- spaces
 
 
1
  accelerate
2
  bitsandbytes
3
  transformers
4
+ spaces
5
+ sentencepiece