theschoolofai commited on
Commit
edc362c
·
1 Parent(s): 1aa932f

Create resnet.py

Browse files
Files changed (1) hide show
  1. resnet.py +76 -0
resnet.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ ResNet in PyTorch.
3
+ For Pre-activation ResNet, see 'preact_resnet.py'.
4
+
5
+ Reference:
6
+ [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
7
+ Deep Residual Learning for Image Recognition. arXiv:1512.03385
8
+ """
9
+ import torch.nn as nn
10
+ import torch.nn.functional as F
11
+
12
+
13
+ class BasicBlock(nn.Module):
14
+ expansion = 1
15
+
16
+ def __init__(self, in_planes, planes, stride=1):
17
+ super(BasicBlock, self).__init__()
18
+ self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
19
+ self.bn1 = nn.BatchNorm2d(planes)
20
+ self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
21
+ self.bn2 = nn.BatchNorm2d(planes)
22
+
23
+ self.shortcut = nn.Sequential()
24
+ if stride != 1 or in_planes != self.expansion*planes:
25
+ self.shortcut = nn.Sequential(
26
+ nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
27
+ nn.BatchNorm2d(self.expansion*planes)
28
+ )
29
+
30
+ def forward(self, x):
31
+ out = F.relu(self.bn1(self.conv1(x)))
32
+ out = self.bn2(self.conv2(out))
33
+ out += self.shortcut(x)
34
+ out = F.relu(out)
35
+ return out
36
+
37
+
38
+ class ResNet(nn.Module):
39
+ def __init__(self, block, num_blocks, num_classes=10):
40
+ super(ResNet, self).__init__()
41
+ self.in_planes = 64
42
+
43
+ self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
44
+ self.bn1 = nn.BatchNorm2d(64)
45
+ self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
46
+ self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
47
+ self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
48
+ self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
49
+ self.linear = nn.Linear(512*block.expansion, num_classes)
50
+
51
+ def _make_layer(self, block, planes, num_blocks, stride):
52
+ strides = [stride] + [1]*(num_blocks-1)
53
+ layers = []
54
+ for stride in strides:
55
+ layers.append(block(self.in_planes, planes, stride))
56
+ self.in_planes = planes * block.expansion
57
+ return nn.Sequential(*layers)
58
+
59
+ def forward(self, x):
60
+ out = F.relu(self.bn1(self.conv1(x)))
61
+ out = self.layer1(out)
62
+ out = self.layer2(out)
63
+ out = self.layer3(out)
64
+ out = self.layer4(out)
65
+ out = F.avg_pool2d(out, 4)
66
+ out = out.view(out.size(0), -1)
67
+ out = self.linear(out)
68
+ return out
69
+
70
+
71
+ def ResNet18():
72
+ return ResNet(BasicBlock, [2, 2, 2, 2])
73
+
74
+
75
+ def ResNet34():
76
+ return ResNet(BasicBlock, [3, 4, 6, 3])