theoldmandthesea commited on
Commit
cac16fe
1 Parent(s): e972ba9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -12
app.py CHANGED
@@ -2,31 +2,57 @@ import gradio as gr
2
  import numpy as np
3
  import torch
4
  from datasets import load_dataset
5
-
6
  from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
7
 
8
 
9
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
10
 
11
  # load speech translation checkpoint
12
- asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
-
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
- vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
-
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
21
- speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
 
23
 
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "nl"})
26
  return outputs["text"]
27
 
28
 
29
  def synthesise(text):
 
30
  inputs = processor(text=text, return_tensors="pt")
31
  speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
32
  return speech.cpu()
@@ -41,9 +67,8 @@ def speech_to_speech_translation(audio):
41
 
42
  title = "Cascaded STST"
43
  description = """
44
- Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
45
- [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
46
-
47
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
48
  """
49
 
 
2
  import numpy as np
3
  import torch
4
  from datasets import load_dataset
 
5
  from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
6
 
7
 
8
  device = "cuda:0" if torch.cuda.is_available() else "cpu"
9
 
10
  # load speech translation checkpoint
11
+ asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-large-v2", device=device)
12
 
13
  # load text-to-speech checkpoint and speaker embeddings
14
+ model_id = "Sandiago21/speecht5_finetuned_voxpopuli_it" # update with your model id
15
+ # pipe = pipeline("automatic-speech-recognition", model=model_id)
16
+ model = SpeechT5ForTextToSpeech.from_pretrained(model_id)
17
+ vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
 
18
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
19
+ speaker_embeddings = torch.tensor(embeddings_dataset[7440]["xvector"]).unsqueeze(0)
20
+
21
+ processor = SpeechT5Processor.from_pretrained(model_id)
22
+
23
+ replacements = [
24
+ ("á", "a"),
25
+ ("ç", "c"),
26
+ ("è", "e"),
27
+ ("ì", "i"),
28
+ ("í", "i"),
29
+ ("ò", "o"),
30
+ ("ó", "o"),
31
+ ("ù", "u"),
32
+ ("ú", "u"),
33
+ ("š", "s"),
34
+ ("ï", "i"),
35
+ ]
36
+
37
+ def cleanup_text(text):
38
+ for src, dst in replacements:
39
+ text = text.replace(src, dst)
40
+ return text
41
+
42
+ def synthesize_speech(text):
43
+ text = cleanup_text(text)
44
+ inputs = processor(text=text, return_tensors="pt")
45
+ speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
46
 
47
+ return gr.Audio.update(value=(16000, speech.cpu().numpy()))
48
 
49
  def translate(audio):
50
+ outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "italian"})
51
  return outputs["text"]
52
 
53
 
54
  def synthesise(text):
55
+ text = cleanup_text(text)
56
  inputs = processor(text=text, return_tensors="pt")
57
  speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
58
  return speech.cpu()
 
67
 
68
  title = "Cascaded STST"
69
  description = """
70
+ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Italian. Demo uses OpenAI's [Whisper Large v2](https://huggingface.co/openai/whisper-large-v2) model for speech translation, and [Sandiago21/speecht5_finetuned_voxpopuli_it](https://huggingface.co/Sandiago21/speecht5_finetuned_voxpopuli_it) checkpoint for text-to-speech, which is based on Microsoft's
71
+ [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech, fine-tuned in Italian Audio dataset:
 
72
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
73
  """
74