Spaces:
Sleeping
Sleeping
thenativefox
commited on
Commit
•
93c49cb
1
Parent(s):
1c860fb
fix async issues
Browse files- app.py +49 -25
- backend/query_llm.py +22 -2
- backend/semantic_search.py +0 -1
- requirements.txt +1 -1
app.py
CHANGED
@@ -12,8 +12,11 @@ from jinja2 import Environment, FileSystemLoader
|
|
12 |
from backend.query_llm import generate_hf, generate_openai
|
13 |
from backend.semantic_search import retrieve
|
14 |
|
|
|
|
|
15 |
|
16 |
TOP_K = int(os.getenv("TOP_K", 4))
|
|
|
17 |
|
18 |
proj_dir = Path(__file__).parent
|
19 |
# Setting up the logging
|
@@ -29,13 +32,17 @@ template_html = env.get_template('template_html.j2')
|
|
29 |
|
30 |
|
31 |
def add_text(history, text):
|
|
|
32 |
history = [] if history is None else history
|
33 |
history = history + [(text, None)]
|
|
|
34 |
return history, gr.Textbox(value="", interactive=False)
|
35 |
|
36 |
|
37 |
def bot(history, api_kind):
|
|
|
38 |
query = history[-1][0]
|
|
|
39 |
|
40 |
if not query:
|
41 |
raise gr.Warning("Please submit a non-empty string as a prompt")
|
@@ -52,13 +59,14 @@ def bot(history, api_kind):
|
|
52 |
# Create Prompt
|
53 |
prompt = template.render(documents=documents, query=query)
|
54 |
prompt_html = template_html.render(documents=documents, query=query)
|
|
|
55 |
|
56 |
if api_kind == "HuggingFace":
|
57 |
-
|
58 |
elif api_kind == "OpenAI":
|
59 |
-
|
60 |
else:
|
61 |
-
|
62 |
|
63 |
history[-1][1] = ""
|
64 |
for character in generate_fn(prompt, history[:-1]):
|
@@ -68,40 +76,56 @@ def bot(history, api_kind):
|
|
68 |
|
69 |
with gr.Blocks() as demo:
|
70 |
chatbot = gr.Chatbot(
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
|
80 |
with gr.Row():
|
81 |
txt = gr.Textbox(
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
txt_btn = gr.Button(value="Submit text", scale=1)
|
88 |
|
89 |
api_kind = gr.Radio(choices=["HuggingFace", "OpenAI"], value="HuggingFace")
|
90 |
|
91 |
prompt_html = gr.HTML()
|
92 |
-
# Turn off interactivity while generating if you click
|
93 |
-
txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
|
94 |
-
bot, [chatbot, api_kind], [chatbot, prompt_html])
|
95 |
|
96 |
-
# Turn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
|
98 |
|
99 |
# Turn off interactivity while generating if you hit enter
|
100 |
-
txt_msg = txt.submit(
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
|
105 |
|
106 |
demo.queue()
|
107 |
-
|
|
|
|
12 |
from backend.query_llm import generate_hf, generate_openai
|
13 |
from backend.semantic_search import retrieve
|
14 |
|
15 |
+
from dotenv import load_dotenv
|
16 |
+
load_dotenv()
|
17 |
|
18 |
TOP_K = int(os.getenv("TOP_K", 4))
|
19 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
20 |
|
21 |
proj_dir = Path(__file__).parent
|
22 |
# Setting up the logging
|
|
|
32 |
|
33 |
|
34 |
def add_text(history, text):
|
35 |
+
logger.info(f'Adding text: {text}')
|
36 |
history = [] if history is None else history
|
37 |
history = history + [(text, None)]
|
38 |
+
logger.info(f'Updated history: {history}')
|
39 |
return history, gr.Textbox(value="", interactive=False)
|
40 |
|
41 |
|
42 |
def bot(history, api_kind):
|
43 |
+
logger.info(f'Bot function called with history: {history} and api_kind: {api_kind}')
|
44 |
query = history[-1][0]
|
45 |
+
logger.info(f'Query: {query}')
|
46 |
|
47 |
if not query:
|
48 |
raise gr.Warning("Please submit a non-empty string as a prompt")
|
|
|
59 |
# Create Prompt
|
60 |
prompt = template.render(documents=documents, query=query)
|
61 |
prompt_html = template_html.render(documents=documents, query=query)
|
62 |
+
logger.info(f'Prompt created: {prompt}')
|
63 |
|
64 |
if api_kind == "HuggingFace":
|
65 |
+
generate_fn = generate_hf
|
66 |
elif api_kind == "OpenAI":
|
67 |
+
generate_fn = generate_openai
|
68 |
else:
|
69 |
+
raise gr.Error(f"API {api_kind} is not supported")
|
70 |
|
71 |
history[-1][1] = ""
|
72 |
for character in generate_fn(prompt, history[:-1]):
|
|
|
76 |
|
77 |
with gr.Blocks() as demo:
|
78 |
chatbot = gr.Chatbot(
|
79 |
+
[],
|
80 |
+
elem_id="chatbot",
|
81 |
+
avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
|
82 |
+
'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
|
83 |
+
bubble_full_width=False,
|
84 |
+
show_copy_button=True,
|
85 |
+
show_share_button=True,
|
86 |
+
)
|
87 |
|
88 |
with gr.Row():
|
89 |
txt = gr.Textbox(
|
90 |
+
scale=3,
|
91 |
+
show_label=False,
|
92 |
+
placeholder="Enter text and press enter",
|
93 |
+
container=False,
|
94 |
+
)
|
95 |
txt_btn = gr.Button(value="Submit text", scale=1)
|
96 |
|
97 |
api_kind = gr.Radio(choices=["HuggingFace", "OpenAI"], value="HuggingFace")
|
98 |
|
99 |
prompt_html = gr.HTML()
|
|
|
|
|
|
|
100 |
|
101 |
+
# Turn off interactivity while generating if you click
|
102 |
+
txt_msg = txt_btn.click(
|
103 |
+
fn=add_text,
|
104 |
+
inputs=[chatbot, txt],
|
105 |
+
outputs=[chatbot, txt],
|
106 |
+
queue=False
|
107 |
+
).then(
|
108 |
+
fn=bot,
|
109 |
+
inputs=[chatbot, api_kind],
|
110 |
+
outputs=[chatbot, prompt_html],
|
111 |
+
queue=False
|
112 |
+
)
|
113 |
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
|
114 |
|
115 |
# Turn off interactivity while generating if you hit enter
|
116 |
+
txt_msg = txt.submit(
|
117 |
+
fn=add_text,
|
118 |
+
inputs=[chatbot, txt],
|
119 |
+
outputs=[chatbot, txt],
|
120 |
+
queue=False
|
121 |
+
).then(
|
122 |
+
fn=bot,
|
123 |
+
inputs=[chatbot, api_kind],
|
124 |
+
outputs=[chatbot, prompt_html],
|
125 |
+
queue=False
|
126 |
+
)
|
127 |
txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
|
128 |
|
129 |
demo.queue()
|
130 |
+
logger.info('Launching Gradio app...')
|
131 |
+
demo.launch(debug=True)
|
backend/query_llm.py
CHANGED
@@ -1,23 +1,27 @@
|
|
1 |
import openai
|
2 |
import gradio as gr
|
3 |
import os
|
|
|
4 |
|
5 |
from typing import Any, Dict, Generator, List
|
6 |
|
7 |
from huggingface_hub import InferenceClient
|
8 |
from transformers import AutoTokenizer
|
9 |
|
|
|
|
|
10 |
|
11 |
OPENAI_KEY = os.getenv("OPENAI_API_KEY")
|
12 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
13 |
HF_MODEL = os.getenv("HF_MODEL")
|
14 |
OPENAI_MODEL = os.getenv("OPENAI_MODEL")
|
|
|
15 |
|
16 |
HF_CLIENT = InferenceClient(
|
17 |
os.getenv("HF_MODEL"),
|
18 |
token=HF_TOKEN
|
19 |
)
|
20 |
-
|
21 |
TOKENIZER = AutoTokenizer.from_pretrained(HF_MODEL)
|
22 |
|
23 |
HF_GENERATE_KWARGS = {
|
@@ -81,10 +85,17 @@ def generate_hf(prompt: str, history: str) -> Generator[str, None, str]:
|
|
81 |
details=True,
|
82 |
return_full_text=False
|
83 |
)
|
|
|
84 |
output = ""
|
|
|
85 |
for response in stream:
|
86 |
output += response.token.text
|
|
|
|
|
87 |
yield output
|
|
|
|
|
|
|
88 |
|
89 |
except Exception as e:
|
90 |
if "Too Many Requests" in str(e):
|
@@ -109,6 +120,14 @@ def generate_openai(prompt: str, history: str) -> Generator[str, None, str]:
|
|
109 |
formatted_prompt = format_prompt(prompt, "openai")
|
110 |
|
111 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
stream = OAI_CLIENT.chat.completions.create(
|
113 |
model=os.getenv("OPENAI_MODEL"),
|
114 |
messages=formatted_prompt,
|
@@ -122,9 +141,10 @@ def generate_openai(prompt: str, history: str) -> Generator[str, None, str]:
|
|
122 |
yield output
|
123 |
|
124 |
except Exception as e:
|
|
|
125 |
if "Too Many Requests" in str(e):
|
126 |
raise gr.Error("ERROR: Too many requests on OpenAI client")
|
127 |
elif "You didn't provide an API key" in str(e):
|
128 |
raise gr.Error("Authentication error: OpenAI key was either not provided or incorrect")
|
129 |
else:
|
130 |
-
raise gr.Error(f"Unhandled Exception: {str(e)}")
|
|
|
1 |
import openai
|
2 |
import gradio as gr
|
3 |
import os
|
4 |
+
import logging
|
5 |
|
6 |
from typing import Any, Dict, Generator, List
|
7 |
|
8 |
from huggingface_hub import InferenceClient
|
9 |
from transformers import AutoTokenizer
|
10 |
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
load_dotenv()
|
13 |
|
14 |
OPENAI_KEY = os.getenv("OPENAI_API_KEY")
|
15 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
16 |
HF_MODEL = os.getenv("HF_MODEL")
|
17 |
OPENAI_MODEL = os.getenv("OPENAI_MODEL")
|
18 |
+
OAI_CLIENT = openai.Client(api_key=OPENAI_KEY)
|
19 |
|
20 |
HF_CLIENT = InferenceClient(
|
21 |
os.getenv("HF_MODEL"),
|
22 |
token=HF_TOKEN
|
23 |
)
|
24 |
+
openai.api_key = OPENAI_KEY
|
25 |
TOKENIZER = AutoTokenizer.from_pretrained(HF_MODEL)
|
26 |
|
27 |
HF_GENERATE_KWARGS = {
|
|
|
85 |
details=True,
|
86 |
return_full_text=False
|
87 |
)
|
88 |
+
|
89 |
output = ""
|
90 |
+
final_output = []
|
91 |
for response in stream:
|
92 |
output += response.token.text
|
93 |
+
final_output.append(response.token.text)
|
94 |
+
logging.info(f"Current output: {output}")
|
95 |
yield output
|
96 |
+
|
97 |
+
# Print the final output
|
98 |
+
logging.info(f"Final output: {''.join(final_output)}")
|
99 |
|
100 |
except Exception as e:
|
101 |
if "Too Many Requests" in str(e):
|
|
|
120 |
formatted_prompt = format_prompt(prompt, "openai")
|
121 |
|
122 |
try:
|
123 |
+
# response = OAI_CLIENT.chat.completions.create(
|
124 |
+
# model=os.getenv("OPENAI_MODEL"),
|
125 |
+
# messages=formatted_prompt,
|
126 |
+
# **OAI_GENERATE_KWARGS
|
127 |
+
# )
|
128 |
+
# logging.info("SIMPLE OUTPUT")
|
129 |
+
# logging.info(response.choices[0].message.content)
|
130 |
+
|
131 |
stream = OAI_CLIENT.chat.completions.create(
|
132 |
model=os.getenv("OPENAI_MODEL"),
|
133 |
messages=formatted_prompt,
|
|
|
141 |
yield output
|
142 |
|
143 |
except Exception as e:
|
144 |
+
logging.error(f"Exception during OpenAI generation: {str(e)}")
|
145 |
if "Too Many Requests" in str(e):
|
146 |
raise gr.Error("ERROR: Too many requests on OpenAI client")
|
147 |
elif "You didn't provide an API key" in str(e):
|
148 |
raise gr.Error("Authentication error: OpenAI key was either not provided or incorrect")
|
149 |
else:
|
150 |
+
raise gr.Error(f"Unhandled Exception: {str(e)}")
|
backend/semantic_search.py
CHANGED
@@ -50,7 +50,6 @@ retriever = SentenceTransformer(os.getenv("EMB_MODEL"))
|
|
50 |
|
51 |
def get_table_name():
|
52 |
emb_model = os.getenv("EMB_MODEL")
|
53 |
-
print(emb_model)
|
54 |
if emb_model == "sentence-transformers/all-MiniLM-L6-v2":
|
55 |
return MODEL1_STRATEGY1
|
56 |
elif emb_model == "BAAI/bge-large-en-v1.5":
|
|
|
50 |
|
51 |
def get_table_name():
|
52 |
emb_model = os.getenv("EMB_MODEL")
|
|
|
53 |
if emb_model == "sentence-transformers/all-MiniLM-L6-v2":
|
54 |
return MODEL1_STRATEGY1
|
55 |
elif emb_model == "BAAI/bge-large-en-v1.5":
|
requirements.txt
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
lancedb==0.8.2
|
2 |
-
openai==1.
|
3 |
langchain==0.2.5
|
4 |
tiktoken
|
5 |
sentence-transformers==3.0.0
|
|
|
1 |
lancedb==0.8.2
|
2 |
+
openai==1.35.3
|
3 |
langchain==0.2.5
|
4 |
tiktoken
|
5 |
sentence-transformers==3.0.0
|