Spaces:
Sleeping
Sleeping
themeetjani
commited on
Commit
•
dae16ed
1
Parent(s):
8b8017b
Upload 3 files
Browse files- application.py +91 -0
- requirements.txt +6 -0
- tweet_model_v1.bin +3 -0
application.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import transformers
|
4 |
+
import json
|
5 |
+
from flask import Flask, jsonify, request
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import boto3
|
8 |
+
import pandas as pd
|
9 |
+
bucket = 'data-ai-dev2'
|
10 |
+
from transformers import BertTokenizer, BertModel
|
11 |
+
from torch import cuda
|
12 |
+
device = 'cuda' if cuda.is_available() else 'cpu'
|
13 |
+
|
14 |
+
class RobertaClass(torch.nn.Module):
|
15 |
+
def __init__(self):
|
16 |
+
super(RobertaClass, self).__init__()
|
17 |
+
self.l1 = BertModel.from_pretrained("bert-base-multilingual-cased")
|
18 |
+
self.pre_classifier = torch.nn.Linear(768, 768)
|
19 |
+
self.dropout = torch.nn.Dropout(0.3)
|
20 |
+
self.classifier = torch.nn.Linear(768, 8)
|
21 |
+
|
22 |
+
def forward(self, input_ids, attention_mask, token_type_ids):
|
23 |
+
output_1 = self.l1(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
|
24 |
+
hidden_state = output_1[0]
|
25 |
+
pooler = hidden_state[:, 0]
|
26 |
+
pooler = self.pre_classifier(pooler)
|
27 |
+
pooler = torch.nn.ReLU()(pooler)
|
28 |
+
pooler = self.dropout(pooler)
|
29 |
+
output = self.classifier(pooler)
|
30 |
+
return output
|
31 |
+
|
32 |
+
model = RobertaClass()
|
33 |
+
model.to(device)
|
34 |
+
|
35 |
+
s3 = boto3.client('s3', aws_access_key_id='AKIAW5BGUY6ZRCSQBSIJ', aws_secret_access_key= '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')
|
36 |
+
s3.download_file(Bucket=bucket, Key='model_hf/tweet_model/tweet_model_v1.bin', Filename = './tweet_model_v1.bin')
|
37 |
+
|
38 |
+
model = torch.load('tweet_model_v1.bin', map_location=torch.device('cpu'))
|
39 |
+
|
40 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased', truncation=True, do_lower_case=True)
|
41 |
+
|
42 |
+
def id2class_fun(lst, map_cl):
|
43 |
+
s = pd.Series(lst)
|
44 |
+
return s.map(map_cl).tolist()
|
45 |
+
|
46 |
+
application = Flask(__name__)
|
47 |
+
@application.route('/')
|
48 |
+
def home():
|
49 |
+
return "Working!"
|
50 |
+
|
51 |
+
@application.route('/process/', methods=['POST'])
|
52 |
+
def process():
|
53 |
+
content_type = request.headers.get('Content-Type')
|
54 |
+
if (content_type == 'application/json'):
|
55 |
+
json_file = request.json
|
56 |
+
loaded = json.dumps(json_file)
|
57 |
+
new_loaded = json.loads(loaded)
|
58 |
+
text = new_loaded['text']
|
59 |
+
id2class = {0: 'InappropriateUndesirable', 1 : 'GreenContent', 2 : 'IllegalActivities',
|
60 |
+
3 : 'DiscriminatoryHate', 4 :'ViolentGraphic', 5:'PotentialAddiction',
|
61 |
+
6 : 'ExtremismTerrorism', 7 : 'SexualExplicit'}
|
62 |
+
try:
|
63 |
+
|
64 |
+
inputs = (
|
65 |
+
tokenizer.encode_plus(
|
66 |
+
text, None, add_special_tokens=True, max_length = 512,
|
67 |
+
return_token_type_ids=True, padding=True,
|
68 |
+
truncation=True, return_tensors='pt'))
|
69 |
+
ids = inputs['input_ids']
|
70 |
+
mask = inputs['attention_mask']
|
71 |
+
token_type_ids = inputs["token_type_ids"]
|
72 |
+
outputs = model(ids, mask, token_type_ids)
|
73 |
+
top_values, top_indices = torch.topk(outputs.data, k=2, dim=1)
|
74 |
+
probs_values = F.softmax(top_values, dim=0)
|
75 |
+
prd_cls = top_indices.cpu().detach().numpy().tolist()
|
76 |
+
prd_cls = [item for sublist in prd_cls for item in sublist]
|
77 |
+
prd_cls_1 = id2class_fun(prd_cls, id2class)
|
78 |
+
prd_score = top_values.cpu().detach().numpy().tolist()
|
79 |
+
prd_score = [item for sublist in prd_score for item in sublist]
|
80 |
+
otp = dict(zip(prd_cls_1, prd_score))
|
81 |
+
# .replace(map_class, inplace=True)
|
82 |
+
return jsonify({'output':otp})
|
83 |
+
except:
|
84 |
+
return jsonify({'output':'something went wrong'})
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
if __name__ == "__main__":
|
89 |
+
application.debug = True
|
90 |
+
application.run()
|
91 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers==4.31.0
|
2 |
+
numpy==1.25.2
|
3 |
+
Flask==2.3.2
|
4 |
+
boto3==1.26.157
|
5 |
+
torch==2.0.0
|
6 |
+
pandas==1.5.3
|
tweet_model_v1.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eaa1adad810a4ec32ba1e5e7226eafc7f083953355d902d5d67cfebab2a72359
|
3 |
+
size 713927888
|