themanas021 commited on
Commit
05facb4
·
1 Parent(s): 0b87ce8

Update ingest.py

Browse files
Files changed (1) hide show
  1. ingest.py +28 -25
ingest.py CHANGED
@@ -1,32 +1,35 @@
1
- from langchain.document_loaders import PyPDFLoader, DirectoryLoader, PDFMinerLoader
2
- from langchain.text_splitter import RecursiveCharacterTextSplitter
3
- from langchain.embeddings import SentenceTransformerEmbeddings
4
- from langchain.vectorstores import Chroma
5
- import os
6
  from constants import CHROMA_SETTINGS
7
 
8
  persist_directory = "db"
9
 
10
  def main():
11
- for root, dirs, files in os.walk("docs"):
12
- for file in files:
13
- if file.endswith(".pdf"):
14
- print(file)
15
- loader = PyPDFLoader(os.path.join(root, file))
16
- documents = loader.load()
17
- print("splitting into chunks")
18
- text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
19
- texts = text_splitter.split_documents(documents)
20
- #create embeddings here
21
- print("Loading sentence transformers model")
22
- embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
23
- #create vector store here
24
- print(f"Creating embeddings. May take some minutes...")
25
- db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS)
26
- db.persist()
27
- db=None
28
-
29
- print(f"Ingestion complete! You can now run privateGPT.py to query your documents")
 
 
 
30
 
31
  if __name__ == "__main__":
32
- main()
 
1
+ import streamlit as st
2
+ from langchain.document_loaders import PyPDFLoader
3
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
4
+ from langchain.embeddings import SentenceTransformerEmbeddings
5
+ from langchain.vectorstores import Chroma
6
  from constants import CHROMA_SETTINGS
7
 
8
  persist_directory = "db"
9
 
10
  def main():
11
+ st.title("PDF Processor")
12
+
13
+ uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])
14
+
15
+ if uploaded_file is not None:
16
+ st.write("Processing PDF...")
17
+ loader = PyPDFLoader(uploaded_file)
18
+ documents = loader.load()
19
+
20
+ st.write("Splitting into chunks")
21
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
22
+ texts = text_splitter.split_documents(documents)
23
+
24
+ st.write("Loading sentence transformers model")
25
+ embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
26
+
27
+ st.write("Creating embeddings. This may take some time...")
28
+ db = Chroma.from_documents(texts, embeddings, persist_directory=persist_directory, client_settings=CHROMA_SETTINGS)
29
+ db.persist()
30
+ db = None
31
+
32
+ st.success("Ingestion complete! You can now run privateGPT.py to query your documents")
33
 
34
  if __name__ == "__main__":
35
+ main()