Spaces:
Runtime error
Runtime error
themanas021
commited on
Commit
·
cc1b0ab
1
Parent(s):
5dcf0ff
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pickle
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from transformers import BertTokenizer, BertModel
|
6 |
+
from sklearn.linear_model import LogisticRegression
|
7 |
+
|
8 |
+
# Load BERT tokenizer and model
|
9 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
10 |
+
bert_model = BertModel.from_pretrained('bert-base-uncased')
|
11 |
+
|
12 |
+
# Load the trained Logistic Regression classifier
|
13 |
+
with open('bert_cased_model.pkl', 'rb') as model_file:
|
14 |
+
classifier = pickle.load(model_file)
|
15 |
+
|
16 |
+
# Define function to preprocess and classify text
|
17 |
+
def classify_text(text):
|
18 |
+
# Preprocess text and get BERT embeddings
|
19 |
+
inputs = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
|
20 |
+
with torch.no_grad():
|
21 |
+
outputs = bert_model(**inputs)
|
22 |
+
embeddings = outputs.last_hidden_state[:, 0, :].numpy()
|
23 |
+
|
24 |
+
# Predict using the classifier
|
25 |
+
label = classifier.predict(embeddings)
|
26 |
+
return label[0]
|
27 |
+
|
28 |
+
# Create the Gradio interface
|
29 |
+
iface = gr.Interface(
|
30 |
+
fn=classify_text,
|
31 |
+
inputs="text",
|
32 |
+
outputs="text",
|
33 |
+
title="Text Classification: Human or AI?",
|
34 |
+
description="Enter a text to classify whether it's generated by a human or AI.",
|
35 |
+
)
|
36 |
+
|
37 |
+
# Launch the Gradio interface
|
38 |
+
iface.launch()
|