|
|
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from models.conv_blocks import InvertedResBlock |
|
from models.conv_blocks import ConvBlock |
|
from models.conv_blocks import UpConvLNormLReLU |
|
from utils.common import initialize_weights |
|
|
|
|
|
class GeneratorV2(nn.Module): |
|
def __init__(self, dataset=''): |
|
super(GeneratorV2, self).__init__() |
|
self.name = f'{self.__class__.__name__}_{dataset}' |
|
|
|
self.conv_block1 = nn.Sequential( |
|
ConvBlock(3, 32, kernel_size=7, stride=1, padding=3, norm_type="layer"), |
|
ConvBlock(32, 64, kernel_size=3, stride=2, padding=(0, 1, 0, 1), norm_type="layer"), |
|
ConvBlock(64, 64, kernel_size=3, stride=1, norm_type="layer"), |
|
) |
|
|
|
self.conv_block2 = nn.Sequential( |
|
ConvBlock(64, 128, kernel_size=3, stride=2, padding=(0, 1, 0, 1), norm_type="layer"), |
|
ConvBlock(128, 128, kernel_size=3, stride=1, norm_type="layer"), |
|
) |
|
|
|
self.res_blocks = nn.Sequential( |
|
ConvBlock(128, 128, kernel_size=3, stride=1, norm_type="layer"), |
|
InvertedResBlock(128, 256, expand_ratio=2, norm_type="layer"), |
|
InvertedResBlock(256, 256, expand_ratio=2, norm_type="layer"), |
|
InvertedResBlock(256, 256, expand_ratio=2, norm_type="layer"), |
|
InvertedResBlock(256, 256, expand_ratio=2, norm_type="layer"), |
|
ConvBlock(256, 128, kernel_size=3, stride=1, norm_type="layer"), |
|
) |
|
|
|
self.conv_block3 = nn.Sequential( |
|
|
|
ConvBlock(128, 128, kernel_size=3, stride=1, norm_type="layer"), |
|
ConvBlock(128, 128, kernel_size=3, stride=1, norm_type="layer"), |
|
) |
|
|
|
self.conv_block4 = nn.Sequential( |
|
|
|
ConvBlock(128, 64, kernel_size=3, stride=1, norm_type="layer"), |
|
ConvBlock(64, 64, kernel_size=3, stride=1, norm_type="layer"), |
|
ConvBlock(64, 32, kernel_size=7, padding=3, stride=1, norm_type="layer"), |
|
) |
|
|
|
self.decode_blocks = nn.Sequential( |
|
nn.Conv2d(32, 3, kernel_size=1, stride=1, padding=0), |
|
nn.Tanh(), |
|
) |
|
|
|
initialize_weights(self) |
|
|
|
def forward(self, x): |
|
out = self.conv_block1(x) |
|
out = self.conv_block2(out) |
|
out = self.res_blocks(out) |
|
out = F.interpolate(out, scale_factor=2, mode="bilinear") |
|
out = self.conv_block3(out) |
|
out = F.interpolate(out, scale_factor=2, mode="bilinear") |
|
out = self.conv_block4(out) |
|
img = self.decode_blocks(out) |
|
|
|
return img |
|
|