|
import torch |
|
import sys |
|
import os |
|
import datetime |
|
|
|
from utils import ( |
|
get_hparams, |
|
plot_spectrogram_to_numpy, |
|
summarize, |
|
load_checkpoint, |
|
save_checkpoint, |
|
latest_checkpoint_path, |
|
) |
|
from random import randint, shuffle |
|
from time import sleep |
|
from time import time as ttime |
|
|
|
from torch.cuda.amp import GradScaler, autocast |
|
|
|
from torch.nn import functional as F |
|
from torch.nn.parallel import DistributedDataParallel as DDP |
|
from torch.utils.data import DataLoader |
|
from torch.utils.tensorboard import SummaryWriter |
|
import torch.distributed as dist |
|
import torch.multiprocessing as mp |
|
|
|
now_dir = os.getcwd() |
|
sys.path.append(os.path.join(now_dir)) |
|
|
|
|
|
from data_utils import ( |
|
DistributedBucketSampler, |
|
TextAudioCollate, |
|
TextAudioCollateMultiNSFsid, |
|
TextAudioLoader, |
|
TextAudioLoaderMultiNSFsid, |
|
) |
|
|
|
from losses import ( |
|
discriminator_loss, |
|
feature_loss, |
|
generator_loss, |
|
kl_loss, |
|
) |
|
from mel_processing import mel_spectrogram_torch, spec_to_mel_torch |
|
|
|
from rvc.train.process.extract_model import extract_model |
|
|
|
from rvc.lib.infer_pack import commons |
|
|
|
hps = get_hparams() |
|
if hps.version == "v1": |
|
from rvc.lib.infer_pack.models import MultiPeriodDiscriminator |
|
from rvc.lib.infer_pack.models import SynthesizerTrnMs256NSFsid as RVC_Model_f0 |
|
from rvc.lib.infer_pack.models import ( |
|
SynthesizerTrnMs256NSFsid_nono as RVC_Model_nof0, |
|
) |
|
elif hps.version == "v2": |
|
from rvc.lib.infer_pack.models import ( |
|
SynthesizerTrnMs768NSFsid as RVC_Model_f0, |
|
SynthesizerTrnMs768NSFsid_nono as RVC_Model_nof0, |
|
MultiPeriodDiscriminatorV2 as MultiPeriodDiscriminator, |
|
) |
|
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = hps.gpus.replace("-", ",") |
|
n_gpus = len(hps.gpus.split("-")) |
|
|
|
|
|
torch.backends.cudnn.deterministic = False |
|
torch.backends.cudnn.benchmark = False |
|
|
|
global_step = 0 |
|
lowest_value = {"step": 0, "value": float("inf"), "epoch": 0} |
|
last_loss_gen_all = 0 |
|
epochs_since_last_lowest = 0 |
|
|
|
|
|
class EpochRecorder: |
|
def __init__(self): |
|
self.last_time = ttime() |
|
|
|
def record(self): |
|
now_time = ttime() |
|
elapsed_time = now_time - self.last_time |
|
self.last_time = now_time |
|
elapsed_time = round(elapsed_time, 1) |
|
elapsed_time_str = str(datetime.timedelta(seconds=int(elapsed_time))) |
|
current_time = datetime.datetime.now().strftime("%H:%M:%S") |
|
return f"time={current_time} | training_speed={elapsed_time_str}" |
|
|
|
|
|
def main(): |
|
n_gpus = torch.cuda.device_count() |
|
|
|
if torch.cuda.is_available() == False and torch.backends.mps.is_available() == True: |
|
n_gpus = 1 |
|
if n_gpus < 1: |
|
print("GPU not detected, reverting to CPU (not recommended)") |
|
n_gpus = 1 |
|
children = [] |
|
pid_file_path = os.path.join(now_dir, "rvc", "train", "train_pid.txt") |
|
with open(pid_file_path, "w") as pid_file: |
|
for i in range(n_gpus): |
|
subproc = mp.Process( |
|
target=run, |
|
args=(i, n_gpus, hps), |
|
) |
|
children.append(subproc) |
|
subproc.start() |
|
pid_file.write(str(subproc.pid) + "\n") |
|
|
|
for i in range(n_gpus): |
|
children[i].join() |
|
|
|
|
|
def run( |
|
rank, |
|
n_gpus, |
|
hps, |
|
): |
|
global global_step |
|
if rank == 0: |
|
writer = SummaryWriter(log_dir=hps.model_dir) |
|
writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval")) |
|
|
|
os.environ["MASTER_ADDR"] = "localhost" |
|
os.environ["MASTER_PORT"] = str(randint(20000, 55555)) |
|
dist.init_process_group( |
|
backend="gloo", init_method="env://", world_size=n_gpus, rank=rank |
|
) |
|
torch.manual_seed(hps.train.seed) |
|
if torch.cuda.is_available(): |
|
torch.cuda.set_device(rank) |
|
|
|
if hps.if_f0 == 1: |
|
train_dataset = TextAudioLoaderMultiNSFsid(hps.data) |
|
else: |
|
train_dataset = TextAudioLoader(hps.data) |
|
|
|
train_sampler = DistributedBucketSampler( |
|
train_dataset, |
|
hps.train.batch_size * n_gpus, |
|
[100, 200, 300, 400, 500, 600, 700, 800, 900], |
|
num_replicas=n_gpus, |
|
rank=rank, |
|
shuffle=True, |
|
) |
|
|
|
if hps.if_f0 == 1: |
|
collate_fn = TextAudioCollateMultiNSFsid() |
|
else: |
|
collate_fn = TextAudioCollate() |
|
train_loader = DataLoader( |
|
train_dataset, |
|
num_workers=4, |
|
shuffle=False, |
|
pin_memory=True, |
|
collate_fn=collate_fn, |
|
batch_sampler=train_sampler, |
|
persistent_workers=True, |
|
prefetch_factor=8, |
|
) |
|
if hps.if_f0 == 1: |
|
net_g = RVC_Model_f0( |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
**hps.model, |
|
is_half=hps.train.fp16_run, |
|
sr=hps.sample_rate, |
|
) |
|
else: |
|
net_g = RVC_Model_nof0( |
|
hps.data.filter_length // 2 + 1, |
|
hps.train.segment_size // hps.data.hop_length, |
|
**hps.model, |
|
is_half=hps.train.fp16_run, |
|
) |
|
if torch.cuda.is_available(): |
|
net_g = net_g.cuda(rank) |
|
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm) |
|
if torch.cuda.is_available(): |
|
net_d = net_d.cuda(rank) |
|
optim_g = torch.optim.AdamW( |
|
net_g.parameters(), |
|
hps.train.learning_rate, |
|
betas=hps.train.betas, |
|
eps=hps.train.eps, |
|
) |
|
optim_d = torch.optim.AdamW( |
|
net_d.parameters(), |
|
hps.train.learning_rate, |
|
betas=hps.train.betas, |
|
eps=hps.train.eps, |
|
) |
|
if torch.cuda.is_available(): |
|
net_g = DDP(net_g, device_ids=[rank]) |
|
net_d = DDP(net_d, device_ids=[rank]) |
|
else: |
|
net_g = DDP(net_g) |
|
net_d = DDP(net_d) |
|
|
|
try: |
|
print("Starting training...") |
|
_, _, _, epoch_str = load_checkpoint( |
|
latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d, optim_d |
|
) |
|
_, _, _, epoch_str = load_checkpoint( |
|
latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g, optim_g |
|
) |
|
global_step = (epoch_str - 1) * len(train_loader) |
|
|
|
except: |
|
epoch_str = 1 |
|
global_step = 0 |
|
if hps.pretrainG != "": |
|
if rank == 0: |
|
print(f"Loaded pretrained_G {hps.pretrainG}") |
|
if hasattr(net_g, "module"): |
|
print( |
|
net_g.module.load_state_dict( |
|
torch.load(hps.pretrainG, map_location="cpu")["model"] |
|
) |
|
) |
|
else: |
|
print( |
|
net_g.load_state_dict( |
|
torch.load(hps.pretrainG, map_location="cpu")["model"] |
|
) |
|
) |
|
if hps.pretrainD != "": |
|
if rank == 0: |
|
print(f"Loaded pretrained_D {hps.pretrainD}") |
|
if hasattr(net_d, "module"): |
|
print( |
|
net_d.module.load_state_dict( |
|
torch.load(hps.pretrainD, map_location="cpu")["model"] |
|
) |
|
) |
|
else: |
|
print( |
|
net_d.load_state_dict( |
|
torch.load(hps.pretrainD, map_location="cpu")["model"] |
|
) |
|
) |
|
|
|
scheduler_g = torch.optim.lr_scheduler.ExponentialLR( |
|
optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2 |
|
) |
|
scheduler_d = torch.optim.lr_scheduler.ExponentialLR( |
|
optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2 |
|
) |
|
|
|
scaler = GradScaler(enabled=hps.train.fp16_run) |
|
|
|
cache = [] |
|
for epoch in range(epoch_str, hps.train.epochs + 1): |
|
if rank == 0: |
|
train_and_evaluate( |
|
rank, |
|
epoch, |
|
hps, |
|
[net_g, net_d], |
|
[optim_g, optim_d], |
|
scaler, |
|
[train_loader, None], |
|
[writer, writer_eval], |
|
cache, |
|
) |
|
else: |
|
train_and_evaluate( |
|
rank, |
|
epoch, |
|
hps, |
|
[net_g, net_d], |
|
[optim_g, optim_d], |
|
scaler, |
|
[train_loader, None], |
|
None, |
|
cache, |
|
) |
|
|
|
scheduler_g.step() |
|
scheduler_d.step() |
|
|
|
|
|
def train_and_evaluate(rank, epoch, hps, nets, optims, scaler, loaders, writers, cache): |
|
global global_step, last_loss_gen_all, lowest_value, epochs_since_last_lowest |
|
|
|
if epoch == 1: |
|
lowest_value = {"step": 0, "value": float("inf"), "epoch": 0} |
|
last_loss_gen_all = 0.0 |
|
epochs_since_last_lowest = 0 |
|
|
|
net_g, net_d = nets |
|
optim_g, optim_d = optims |
|
train_loader = loaders[0] if loaders is not None else None |
|
if writers is not None: |
|
writer = writers[0] |
|
|
|
train_loader.batch_sampler.set_epoch(epoch) |
|
|
|
net_g.train() |
|
net_d.train() |
|
|
|
if hps.if_cache_data_in_gpu == True: |
|
data_iterator = cache |
|
if cache == []: |
|
for batch_idx, info in enumerate(train_loader): |
|
if hps.if_f0 == 1: |
|
( |
|
phone, |
|
phone_lengths, |
|
pitch, |
|
pitchf, |
|
spec, |
|
spec_lengths, |
|
wave, |
|
wave_lengths, |
|
sid, |
|
) = info |
|
else: |
|
( |
|
phone, |
|
phone_lengths, |
|
spec, |
|
spec_lengths, |
|
wave, |
|
wave_lengths, |
|
sid, |
|
) = info |
|
if torch.cuda.is_available(): |
|
phone = phone.cuda(rank, non_blocking=True) |
|
phone_lengths = phone_lengths.cuda(rank, non_blocking=True) |
|
if hps.if_f0 == 1: |
|
pitch = pitch.cuda(rank, non_blocking=True) |
|
pitchf = pitchf.cuda(rank, non_blocking=True) |
|
sid = sid.cuda(rank, non_blocking=True) |
|
spec = spec.cuda(rank, non_blocking=True) |
|
spec_lengths = spec_lengths.cuda(rank, non_blocking=True) |
|
wave = wave.cuda(rank, non_blocking=True) |
|
wave_lengths = wave_lengths.cuda(rank, non_blocking=True) |
|
if hps.if_f0 == 1: |
|
cache.append( |
|
( |
|
batch_idx, |
|
( |
|
phone, |
|
phone_lengths, |
|
pitch, |
|
pitchf, |
|
spec, |
|
spec_lengths, |
|
wave, |
|
wave_lengths, |
|
sid, |
|
), |
|
) |
|
) |
|
else: |
|
cache.append( |
|
( |
|
batch_idx, |
|
( |
|
phone, |
|
phone_lengths, |
|
spec, |
|
spec_lengths, |
|
wave, |
|
wave_lengths, |
|
sid, |
|
), |
|
) |
|
) |
|
else: |
|
shuffle(cache) |
|
else: |
|
data_iterator = enumerate(train_loader) |
|
|
|
epoch_recorder = EpochRecorder() |
|
for batch_idx, info in data_iterator: |
|
if hps.if_f0 == 1: |
|
( |
|
phone, |
|
phone_lengths, |
|
pitch, |
|
pitchf, |
|
spec, |
|
spec_lengths, |
|
wave, |
|
wave_lengths, |
|
sid, |
|
) = info |
|
else: |
|
phone, phone_lengths, spec, spec_lengths, wave, wave_lengths, sid = info |
|
if (hps.if_cache_data_in_gpu == False) and torch.cuda.is_available(): |
|
phone = phone.cuda(rank, non_blocking=True) |
|
phone_lengths = phone_lengths.cuda(rank, non_blocking=True) |
|
if hps.if_f0 == 1: |
|
pitch = pitch.cuda(rank, non_blocking=True) |
|
pitchf = pitchf.cuda(rank, non_blocking=True) |
|
sid = sid.cuda(rank, non_blocking=True) |
|
spec = spec.cuda(rank, non_blocking=True) |
|
spec_lengths = spec_lengths.cuda(rank, non_blocking=True) |
|
wave = wave.cuda(rank, non_blocking=True) |
|
|
|
with autocast(enabled=hps.train.fp16_run): |
|
if hps.if_f0 == 1: |
|
( |
|
y_hat, |
|
ids_slice, |
|
x_mask, |
|
z_mask, |
|
(z, z_p, m_p, logs_p, m_q, logs_q), |
|
) = net_g(phone, phone_lengths, pitch, pitchf, spec, spec_lengths, sid) |
|
else: |
|
( |
|
y_hat, |
|
ids_slice, |
|
x_mask, |
|
z_mask, |
|
(z, z_p, m_p, logs_p, m_q, logs_q), |
|
) = net_g(phone, phone_lengths, spec, spec_lengths, sid) |
|
mel = spec_to_mel_torch( |
|
spec, |
|
hps.data.filter_length, |
|
hps.data.n_mel_channels, |
|
hps.data.sampling_rate, |
|
hps.data.mel_fmin, |
|
hps.data.mel_fmax, |
|
) |
|
y_mel = commons.slice_segments( |
|
mel, ids_slice, hps.train.segment_size // hps.data.hop_length |
|
) |
|
with autocast(enabled=False): |
|
y_hat_mel = mel_spectrogram_torch( |
|
y_hat.float().squeeze(1), |
|
hps.data.filter_length, |
|
hps.data.n_mel_channels, |
|
hps.data.sampling_rate, |
|
hps.data.hop_length, |
|
hps.data.win_length, |
|
hps.data.mel_fmin, |
|
hps.data.mel_fmax, |
|
) |
|
if hps.train.fp16_run == True: |
|
y_hat_mel = y_hat_mel.half() |
|
wave = commons.slice_segments( |
|
wave, ids_slice * hps.data.hop_length, hps.train.segment_size |
|
) |
|
|
|
y_d_hat_r, y_d_hat_g, _, _ = net_d(wave, y_hat.detach()) |
|
with autocast(enabled=False): |
|
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss( |
|
y_d_hat_r, y_d_hat_g |
|
) |
|
optim_d.zero_grad() |
|
scaler.scale(loss_disc).backward() |
|
scaler.unscale_(optim_d) |
|
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None) |
|
scaler.step(optim_d) |
|
|
|
with autocast(enabled=hps.train.fp16_run): |
|
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(wave, y_hat) |
|
with autocast(enabled=False): |
|
loss_mel = F.l1_loss(y_mel, y_hat_mel) * hps.train.c_mel |
|
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * hps.train.c_kl |
|
loss_fm = feature_loss(fmap_r, fmap_g) |
|
loss_gen, losses_gen = generator_loss(y_d_hat_g) |
|
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl |
|
|
|
if loss_gen_all < lowest_value["value"]: |
|
lowest_value["value"] = loss_gen_all |
|
lowest_value["step"] = global_step |
|
lowest_value["epoch"] = epoch |
|
|
|
if epoch > lowest_value["epoch"]: |
|
print( |
|
"Alert: The lower generating loss has been exceeded by a lower loss in a subsequent epoch." |
|
) |
|
|
|
optim_g.zero_grad() |
|
scaler.scale(loss_gen_all).backward() |
|
scaler.unscale_(optim_g) |
|
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None) |
|
scaler.step(optim_g) |
|
scaler.update() |
|
|
|
if rank == 0: |
|
if global_step % hps.train.log_interval == 0: |
|
lr = optim_g.param_groups[0]["lr"] |
|
|
|
|
|
if loss_mel > 75: |
|
loss_mel = 75 |
|
if loss_kl > 9: |
|
loss_kl = 9 |
|
|
|
scalar_dict = { |
|
"loss/g/total": loss_gen_all, |
|
"loss/d/total": loss_disc, |
|
"learning_rate": lr, |
|
"grad_norm_d": grad_norm_d, |
|
"grad_norm_g": grad_norm_g, |
|
} |
|
scalar_dict.update( |
|
{ |
|
"loss/g/fm": loss_fm, |
|
"loss/g/mel": loss_mel, |
|
"loss/g/kl": loss_kl, |
|
} |
|
) |
|
|
|
scalar_dict.update( |
|
{"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)} |
|
) |
|
scalar_dict.update( |
|
{"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)} |
|
) |
|
scalar_dict.update( |
|
{"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)} |
|
) |
|
image_dict = { |
|
"slice/mel_org": plot_spectrogram_to_numpy( |
|
y_mel[0].data.cpu().numpy() |
|
), |
|
"slice/mel_gen": plot_spectrogram_to_numpy( |
|
y_hat_mel[0].data.cpu().numpy() |
|
), |
|
"all/mel": plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()), |
|
} |
|
summarize( |
|
writer=writer, |
|
global_step=global_step, |
|
images=image_dict, |
|
scalars=scalar_dict, |
|
) |
|
|
|
|
|
|
|
|
|
global_step += 1 |
|
|
|
if epoch % hps.save_every_epoch == 0 and rank == 0: |
|
checkpoint_suffix = "{}.pth".format( |
|
global_step if hps.if_latest == 0 else 2333333 |
|
) |
|
save_checkpoint( |
|
net_g, |
|
optim_g, |
|
hps.train.learning_rate, |
|
epoch, |
|
os.path.join(hps.model_dir, "G_" + checkpoint_suffix), |
|
) |
|
save_checkpoint( |
|
net_d, |
|
optim_d, |
|
hps.train.learning_rate, |
|
epoch, |
|
os.path.join(hps.model_dir, "D_" + checkpoint_suffix), |
|
) |
|
|
|
if rank == 0 and hps.save_every_weights == "1": |
|
if hasattr(net_g, "module"): |
|
ckpt = net_g.module.state_dict() |
|
else: |
|
ckpt = net_g.state_dict() |
|
extract_model( |
|
ckpt, |
|
hps.sample_rate, |
|
hps.if_f0, |
|
hps.name, |
|
os.path.join( |
|
hps.model_dir, "{}_{}e_{}s.pth".format(hps.name, epoch, global_step) |
|
), |
|
epoch, |
|
global_step, |
|
hps.version, |
|
hps, |
|
) |
|
|
|
if hps.overtraining_detector == 1: |
|
if lowest_value["value"] < last_loss_gen_all: |
|
epochs_since_last_lowest += 1 |
|
else: |
|
epochs_since_last_lowest = 0 |
|
|
|
if epochs_since_last_lowest >= hps.overtraining_threshold: |
|
print( |
|
"Stopping training due to possible overtraining. Lowest generator loss: {} at epoch {}, step {}".format( |
|
lowest_value["value"], lowest_value["epoch"], lowest_value["step"] |
|
) |
|
) |
|
os._exit(2333333) |
|
|
|
if rank == 0: |
|
if epoch > 1: |
|
print(hps.overtraining_threshold) |
|
print( |
|
f"{hps.name} | epoch={epoch} | step={global_step} | {epoch_recorder.record()} | lowest_value={lowest_value['value']} (epoch {lowest_value['epoch']} and step {lowest_value['step']})" |
|
) |
|
else: |
|
print( |
|
f"{hps.name} | epoch={epoch} | step={global_step} | {epoch_recorder.record()}" |
|
) |
|
last_loss_gen_all = loss_gen_all |
|
|
|
if epoch >= hps.total_epoch and rank == 0: |
|
print( |
|
f"Training has been successfully completed with {epoch} epoch, {global_step} steps and {round(loss_gen_all.item(), 3)} loss gen." |
|
) |
|
print( |
|
f"Lowest generator loss: {lowest_value['value']} at epoch {lowest_value['epoch']}, step {lowest_value['step']}" |
|
) |
|
|
|
pid_file_path = os.path.join(now_dir, "rvc", "train", "train_pid.txt") |
|
os.remove(pid_file_path) |
|
|
|
if hasattr(net_g, "module"): |
|
ckpt = net_g.module.state_dict() |
|
else: |
|
ckpt = net_g.state_dict() |
|
|
|
extract_model( |
|
ckpt, |
|
hps.sample_rate, |
|
hps.if_f0, |
|
hps.name, |
|
os.path.join( |
|
hps.model_dir, "{}_{}e_{}s.pth".format(hps.name, epoch, global_step) |
|
), |
|
epoch, |
|
global_step, |
|
hps.version, |
|
hps, |
|
) |
|
sleep(1) |
|
os._exit(2333333) |
|
|
|
|
|
if __name__ == "__main__": |
|
torch.multiprocessing.set_start_method("spawn") |
|
main() |
|
|