Spaces:
Sleeping
Sleeping
import os | |
import torch | |
from collections import OrderedDict | |
logs_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "logs") | |
def replace_keys_in_dict(d, old_key_part, new_key_part): | |
# Use OrderedDict if the original is an OrderedDict | |
if isinstance(d, OrderedDict): | |
updated_dict = OrderedDict() | |
else: | |
updated_dict = {} | |
for key, value in d.items(): | |
# Replace the key part if found | |
new_key = key.replace(old_key_part, new_key_part) | |
# If the value is a dictionary, apply the function recursively | |
if isinstance(value, dict): | |
value = replace_keys_in_dict(value, old_key_part, new_key_part) | |
updated_dict[new_key] = value | |
return updated_dict | |
def save_final(ckpt, sr, if_f0, name, epoch, version, hps): | |
try: | |
pth_file = f"{name}_{epoch}e.pth" | |
pth_file_path = os.path.join("logs", pth_file) | |
pth_file_old_version_path = os.path.join("logs", f"{pth_file}_old_version.pth") | |
opt = OrderedDict( | |
weight={ | |
key: value.half() for key, value in ckpt.items() if "enc_q" not in key | |
} | |
) | |
opt["config"] = [ | |
hps.data.filter_length // 2 + 1, | |
32, | |
hps.model.inter_channels, | |
hps.model.hidden_channels, | |
hps.model.filter_channels, | |
hps.model.n_heads, | |
hps.model.n_layers, | |
hps.model.kernel_size, | |
hps.model.p_dropout, | |
hps.model.resblock, | |
hps.model.resblock_kernel_sizes, | |
hps.model.resblock_dilation_sizes, | |
hps.model.upsample_rates, | |
hps.model.upsample_initial_channel, | |
hps.model.upsample_kernel_sizes, | |
hps.model.spk_embed_dim, | |
hps.model.gin_channels, | |
hps.data.sampling_rate, | |
] | |
opt["info"], opt["sr"], opt["f0"], opt["version"] = epoch, sr, if_f0, version | |
torch.save(opt, pth_file_path) | |
model = torch.load(pth_file_path, map_location=torch.device("cpu")) | |
torch.save( | |
replace_keys_in_dict( | |
replace_keys_in_dict( | |
model, ".parametrizations.weight.original1", ".weight_v" | |
), | |
".parametrizations.weight.original0", | |
".weight_g", | |
), | |
pth_file_old_version_path, | |
) | |
os.remove(pth_file_path) | |
os.rename(pth_file_old_version_path, pth_file_path) | |
return "Success!" | |
except Exception as error: | |
print(error) | |
def extract_small_model(path, name, sr, if_f0, info, version): | |
try: | |
ckpt = torch.load(path, map_location="cpu") | |
if "model" in ckpt: | |
ckpt = ckpt["model"] | |
opt = OrderedDict( | |
weight={ | |
key: value.half() for key, value in ckpt.items() if "enc_q" not in key | |
} | |
) | |
opt["config"] = { | |
"40000": [ | |
1025, | |
32, | |
192, | |
192, | |
768, | |
2, | |
6, | |
3, | |
0, | |
"1", | |
[3, 7, 11], | |
[[1, 3, 5], [1, 3, 5], [1, 3, 5]], | |
[10, 10, 2, 2], | |
512, | |
[16, 16, 4, 4], | |
109, | |
256, | |
40000, | |
], | |
"48000": { | |
"v1": [ | |
1025, | |
32, | |
192, | |
192, | |
768, | |
2, | |
6, | |
3, | |
0, | |
"1", | |
[3, 7, 11], | |
[[1, 3, 5], [1, 3, 5], [1, 3, 5]], | |
[10, 6, 2, 2, 2], | |
512, | |
[16, 16, 4, 4, 4], | |
109, | |
256, | |
48000, | |
], | |
"v2": [ | |
1025, | |
32, | |
192, | |
192, | |
768, | |
2, | |
6, | |
3, | |
0, | |
"1", | |
[3, 7, 11], | |
[[1, 3, 5], [1, 3, 5], [1, 3, 5]], | |
[12, 10, 2, 2], | |
512, | |
[24, 20, 4, 4], | |
109, | |
256, | |
48000, | |
], | |
}, | |
"32000": { | |
"v1": [ | |
513, | |
32, | |
192, | |
192, | |
768, | |
2, | |
6, | |
3, | |
0, | |
"1", | |
[3, 7, 11], | |
[[1, 3, 5], [1, 3, 5], [1, 3, 5]], | |
[10, 4, 2, 2, 2], | |
512, | |
[16, 16, 4, 4, 4], | |
109, | |
256, | |
32000, | |
], | |
"v2": [ | |
513, | |
32, | |
192, | |
192, | |
768, | |
2, | |
6, | |
3, | |
0, | |
"1", | |
[3, 7, 11], | |
[[1, 3, 5], [1, 3, 5], [1, 3, 5]], | |
[10, 8, 2, 2], | |
512, | |
[20, 16, 4, 4], | |
109, | |
256, | |
32000, | |
], | |
}, | |
} | |
opt["config"] = ( | |
opt["config"][sr] | |
if isinstance(opt["config"][sr], list) | |
else opt["config"][sr][version] | |
) | |
if info == "": | |
info = "Extracted model." | |
opt["info"], opt["version"], opt["sr"], opt["f0"] = ( | |
info, | |
version, | |
sr, | |
int(if_f0), | |
) | |
torch.save(opt, f"logs/{name}/{name}.pth") | |
return "Success." | |
except Exception as error: | |
print(error) | |
def change_info(path, info, name): | |
try: | |
ckpt = torch.load(path, map_location="cpu") | |
ckpt["info"] = info | |
if name == "": | |
name = os.path.basename(path) | |
torch.save(ckpt, f"logs/weights/{name}") | |
return "Success." | |
except Exception as error: | |
print(error) | |