Spaces:
Sleeping
Sleeping
import argparse | |
import os | |
import shutil | |
from langchain_community.document_loaders import PyPDFDirectoryLoader | |
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
from langchain.schema.document import Document | |
from langchain_community.vectorstores import Chroma | |
from langchain_community.embeddings.bedrock import BedrockEmbeddings | |
import json | |
import requests | |
from chromadb import Documents, EmbeddingFunction, Embeddings | |
CHROMA_PATH = "chroma" | |
DATA_PATH = "pdfs" | |
class MyEmbeddingFunction(EmbeddingFunction): | |
def embed_documents(self, input: Documents) -> Embeddings: | |
for i in range(5): | |
try: | |
embeddings = [] | |
url = "https://api.deepinfra.com/v1/inference/BAAI/bge-large-en-v1.5" | |
payload = json.dumps({ | |
"inputs": input | |
}) | |
headers = { | |
'Accept': 'application/json, text/plain, */*', | |
'Accept-Language': 'en-US,en;q=0.9,gu;q=0.8,ru;q=0.7,hi;q=0.6', | |
'Connection': 'keep-alive', | |
'Content-Type': 'application/json', | |
'Origin': 'https://deepinfra.com', | |
'Referer': 'https://deepinfra.com/', | |
'Sec-Fetch-Dest': 'empty', | |
'Sec-Fetch-Mode': 'cors', | |
'Sec-Fetch-Site': 'same-site', | |
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36', | |
'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"', | |
'sec-ch-ua-mobile': '?0', | |
'sec-ch-ua-platform': '"Windows"' | |
} | |
response = requests.request("POST", url, headers=headers, data=payload) | |
return response.json()["embeddings"] | |
except: | |
pass | |
def main(): | |
# Check if the database should be cleared (using the --clear flag). | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--reset", action="store_true", help="Reset the database.") | |
args = parser.parse_args() | |
if args.reset: | |
print("β¨ Clearing Database") | |
clear_database() | |
# Create (or update) the data store. | |
documents = load_documents() | |
chunks = split_documents(documents) | |
add_to_chroma(chunks) | |
def load_documents(): | |
print("π Loading Documents") | |
document_loader = PyPDFDirectoryLoader(DATA_PATH) | |
return document_loader.load() | |
def split_documents(documents: list[Document]): | |
print("πͺ Splitting Documents") | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=4000, | |
chunk_overlap=100, | |
length_function=len, | |
is_separator_regex=True | |
) | |
return text_splitter.split_documents(documents) | |
def add_to_chroma(chunks: list[Document]): | |
print("π Adding to Chroma") | |
# Load the existing database. | |
custom_embeddings = MyEmbeddingFunction() | |
db = Chroma( | |
persist_directory=CHROMA_PATH, embedding_function=custom_embeddings | |
) | |
# Calculate Page IDs. | |
chunks_with_ids = calculate_chunk_ids(chunks) | |
# Add or Update the documents. | |
existing_items = db.get(include=[]) # IDs are always included by default | |
existing_ids = set(existing_items["ids"]) | |
print(f"Number of existing documents in DB: {len(existing_ids)}") | |
# Only add documents that don't exist in the DB. | |
new_chunks = [] | |
for chunk in chunks_with_ids: | |
if chunk.metadata["id"] not in existing_ids: | |
new_chunks.append(chunk) | |
if len(new_chunks): | |
print(f"π Adding new documents: {len(new_chunks)}") | |
new_chunk_ids = [chunk.metadata["id"] for chunk in new_chunks] | |
for i in range(0, len(new_chunks), 100): | |
try: | |
db.add_documents(new_chunks[i:i+100], ids=new_chunk_ids[i:i+100]) | |
db.persist() | |
print(f"Added {i+100} documents") | |
except: | |
pass | |
else: | |
print("β No new documents to add") | |
def calculate_chunk_ids(chunks): | |
last_page_id = None | |
current_chunk_index = 0 | |
for chunk in chunks: | |
source = chunk.metadata.get("source") | |
page = chunk.metadata.get("page") | |
current_page_id = f"{source}:{page}" | |
# If the page ID is the same as the last one, increment the index. | |
if current_page_id == last_page_id: | |
current_chunk_index += 1 | |
else: | |
current_chunk_index = 0 | |
# Calculate the chunk ID. | |
chunk_id = f"{current_page_id}:{current_chunk_index}" | |
last_page_id = current_page_id | |
# Add it to the page meta-data. | |
chunk.metadata["id"] = chunk_id | |
return chunks | |
def clear_database(): | |
if os.path.exists(CHROMA_PATH): | |
shutil.rmtree(CHROMA_PATH) | |
if __name__ == "__main__": | |
main() | |