Spaces:
Sleeping
Sleeping
| import argparse | |
| import os | |
| import shutil | |
| from langchain_community.document_loaders import PyPDFDirectoryLoader | |
| from langchain_text_splitters import RecursiveCharacterTextSplitter | |
| from langchain.schema.document import Document | |
| from langchain_community.vectorstores import Chroma | |
| from langchain_community.embeddings.bedrock import BedrockEmbeddings | |
| import json | |
| import requests | |
| from chromadb import Documents, EmbeddingFunction, Embeddings | |
| CHROMA_PATH = "chroma" | |
| DATA_PATH = "pdfs" | |
| class MyEmbeddingFunction(EmbeddingFunction): | |
| def embed_documents(self, input: Documents) -> Embeddings: | |
| for i in range(5): | |
| try: | |
| embeddings = [] | |
| url = "https://api.deepinfra.com/v1/inference/BAAI/bge-large-en-v1.5" | |
| payload = json.dumps({ | |
| "inputs": input | |
| }) | |
| headers = { | |
| 'Accept': 'application/json, text/plain, */*', | |
| 'Accept-Language': 'en-US,en;q=0.9,gu;q=0.8,ru;q=0.7,hi;q=0.6', | |
| 'Connection': 'keep-alive', | |
| 'Content-Type': 'application/json', | |
| 'Origin': 'https://deepinfra.com', | |
| 'Referer': 'https://deepinfra.com/', | |
| 'Sec-Fetch-Dest': 'empty', | |
| 'Sec-Fetch-Mode': 'cors', | |
| 'Sec-Fetch-Site': 'same-site', | |
| 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36', | |
| 'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"', | |
| 'sec-ch-ua-mobile': '?0', | |
| 'sec-ch-ua-platform': '"Windows"' | |
| } | |
| response = requests.request("POST", url, headers=headers, data=payload) | |
| return response.json()["embeddings"] | |
| except: | |
| pass | |
| def main(): | |
| # Check if the database should be cleared (using the --clear flag). | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--reset", action="store_true", help="Reset the database.") | |
| args = parser.parse_args() | |
| if args.reset: | |
| print("β¨ Clearing Database") | |
| clear_database() | |
| # Create (or update) the data store. | |
| documents = load_documents() | |
| chunks = split_documents(documents) | |
| add_to_chroma(chunks) | |
| def load_documents(): | |
| print("π Loading Documents") | |
| document_loader = PyPDFDirectoryLoader(DATA_PATH) | |
| return document_loader.load() | |
| def split_documents(documents: list[Document]): | |
| print("πͺ Splitting Documents") | |
| text_splitter = RecursiveCharacterTextSplitter( | |
| chunk_size=4000, | |
| chunk_overlap=100, | |
| length_function=len, | |
| is_separator_regex=True | |
| ) | |
| return text_splitter.split_documents(documents) | |
| def add_to_chroma(chunks: list[Document]): | |
| print("π Adding to Chroma") | |
| # Load the existing database. | |
| custom_embeddings = MyEmbeddingFunction() | |
| db = Chroma( | |
| persist_directory=CHROMA_PATH, embedding_function=custom_embeddings | |
| ) | |
| # Calculate Page IDs. | |
| chunks_with_ids = calculate_chunk_ids(chunks) | |
| # Add or Update the documents. | |
| existing_items = db.get(include=[]) # IDs are always included by default | |
| existing_ids = set(existing_items["ids"]) | |
| print(f"Number of existing documents in DB: {len(existing_ids)}") | |
| # Only add documents that don't exist in the DB. | |
| new_chunks = [] | |
| for chunk in chunks_with_ids: | |
| if chunk.metadata["id"] not in existing_ids: | |
| new_chunks.append(chunk) | |
| if len(new_chunks): | |
| print(f"π Adding new documents: {len(new_chunks)}") | |
| new_chunk_ids = [chunk.metadata["id"] for chunk in new_chunks] | |
| for i in range(0, len(new_chunks), 100): | |
| try: | |
| db.add_documents(new_chunks[i:i+100], ids=new_chunk_ids[i:i+100]) | |
| db.persist() | |
| print(f"Added {i+100} documents") | |
| except: | |
| pass | |
| else: | |
| print("β No new documents to add") | |
| def calculate_chunk_ids(chunks): | |
| last_page_id = None | |
| current_chunk_index = 0 | |
| for chunk in chunks: | |
| source = chunk.metadata.get("source") | |
| page = chunk.metadata.get("page") | |
| current_page_id = f"{source}:{page}" | |
| # If the page ID is the same as the last one, increment the index. | |
| if current_page_id == last_page_id: | |
| current_chunk_index += 1 | |
| else: | |
| current_chunk_index = 0 | |
| # Calculate the chunk ID. | |
| chunk_id = f"{current_page_id}:{current_chunk_index}" | |
| last_page_id = current_page_id | |
| # Add it to the page meta-data. | |
| chunk.metadata["id"] = chunk_id | |
| return chunks | |
| def clear_database(): | |
| if os.path.exists(CHROMA_PATH): | |
| shutil.rmtree(CHROMA_PATH) | |
| if __name__ == "__main__": | |
| main() | |