narayangpt / databaseCreator.py
thejagstudio's picture
Upload 13 files
ba5136e verified
import argparse
import os
import shutil
from langchain_community.document_loaders import PyPDFDirectoryLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.schema.document import Document
from langchain_community.vectorstores import Chroma
from langchain_community.embeddings.bedrock import BedrockEmbeddings
import json
import requests
from chromadb import Documents, EmbeddingFunction, Embeddings
CHROMA_PATH = "chroma"
DATA_PATH = "pdfs"
class MyEmbeddingFunction(EmbeddingFunction):
def embed_documents(self, input: Documents) -> Embeddings:
for i in range(5):
try:
embeddings = []
url = "https://api.deepinfra.com/v1/inference/BAAI/bge-large-en-v1.5"
payload = json.dumps({
"inputs": input
})
headers = {
'Accept': 'application/json, text/plain, */*',
'Accept-Language': 'en-US,en;q=0.9,gu;q=0.8,ru;q=0.7,hi;q=0.6',
'Connection': 'keep-alive',
'Content-Type': 'application/json',
'Origin': 'https://deepinfra.com',
'Referer': 'https://deepinfra.com/',
'Sec-Fetch-Dest': 'empty',
'Sec-Fetch-Mode': 'cors',
'Sec-Fetch-Site': 'same-site',
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36',
'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
'sec-ch-ua-mobile': '?0',
'sec-ch-ua-platform': '"Windows"'
}
response = requests.request("POST", url, headers=headers, data=payload)
return response.json()["embeddings"]
except:
pass
def main():
# Check if the database should be cleared (using the --clear flag).
parser = argparse.ArgumentParser()
parser.add_argument("--reset", action="store_true", help="Reset the database.")
args = parser.parse_args()
if args.reset:
print("✨ Clearing Database")
clear_database()
# Create (or update) the data store.
documents = load_documents()
chunks = split_documents(documents)
add_to_chroma(chunks)
def load_documents():
print("πŸ“š Loading Documents")
document_loader = PyPDFDirectoryLoader(DATA_PATH)
return document_loader.load()
def split_documents(documents: list[Document]):
print("πŸ”ͺ Splitting Documents")
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=4000,
chunk_overlap=100,
length_function=len,
is_separator_regex=True
)
return text_splitter.split_documents(documents)
def add_to_chroma(chunks: list[Document]):
print("πŸ”— Adding to Chroma")
# Load the existing database.
custom_embeddings = MyEmbeddingFunction()
db = Chroma(
persist_directory=CHROMA_PATH, embedding_function=custom_embeddings
)
# Calculate Page IDs.
chunks_with_ids = calculate_chunk_ids(chunks)
# Add or Update the documents.
existing_items = db.get(include=[]) # IDs are always included by default
existing_ids = set(existing_items["ids"])
print(f"Number of existing documents in DB: {len(existing_ids)}")
# Only add documents that don't exist in the DB.
new_chunks = []
for chunk in chunks_with_ids:
if chunk.metadata["id"] not in existing_ids:
new_chunks.append(chunk)
if len(new_chunks):
print(f"πŸ‘‰ Adding new documents: {len(new_chunks)}")
new_chunk_ids = [chunk.metadata["id"] for chunk in new_chunks]
for i in range(0, len(new_chunks), 100):
try:
db.add_documents(new_chunks[i:i+100], ids=new_chunk_ids[i:i+100])
db.persist()
print(f"Added {i+100} documents")
except:
pass
else:
print("βœ… No new documents to add")
def calculate_chunk_ids(chunks):
last_page_id = None
current_chunk_index = 0
for chunk in chunks:
source = chunk.metadata.get("source")
page = chunk.metadata.get("page")
current_page_id = f"{source}:{page}"
# If the page ID is the same as the last one, increment the index.
if current_page_id == last_page_id:
current_chunk_index += 1
else:
current_chunk_index = 0
# Calculate the chunk ID.
chunk_id = f"{current_page_id}:{current_chunk_index}"
last_page_id = current_page_id
# Add it to the page meta-data.
chunk.metadata["id"] = chunk_id
return chunks
def clear_database():
if os.path.exists(CHROMA_PATH):
shutil.rmtree(CHROMA_PATH)
if __name__ == "__main__":
main()