app.py
CHANGED
@@ -6,11 +6,11 @@ import re
|
|
6 |
from load_data import load_data
|
7 |
from openai import OpenAI
|
8 |
from transformers import AutoTokenizer, AutoModel
|
9 |
-
from
|
10 |
import weaviate
|
11 |
import os
|
12 |
import subprocess
|
13 |
-
|
14 |
|
15 |
# 设置 Matplotlib 的缓存目录
|
16 |
os.environ['MPLCONFIGDIR'] = '/tmp/matplotlib'
|
@@ -23,13 +23,18 @@ auth_config = weaviate.AuthApiKey(api_key="8wNsHV3Enc2PNVL8Bspadh21qYAfAvnK2ux3"
|
|
23 |
|
24 |
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
class_name="
|
32 |
|
|
|
33 |
tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese")
|
34 |
model = AutoModel.from_pretrained("bert-base-chinese")
|
35 |
|
@@ -194,9 +199,8 @@ def respond(
|
|
194 |
|
195 |
query_keywords = list(keywords_dict.keys())
|
196 |
#此处将max_matches作为距离变量
|
197 |
-
class_name="Lhnjames123321"
|
198 |
|
199 |
-
max_matches,top_keywords_list,top_summary =
|
200 |
|
201 |
|
202 |
print(f"max_matches: {max_matches}")
|
|
|
6 |
from load_data import load_data
|
7 |
from openai import OpenAI
|
8 |
from transformers import AutoTokenizer, AutoModel
|
9 |
+
from vec_db import encode_list_to_avg, fetch_response_from_db
|
10 |
import weaviate
|
11 |
import os
|
12 |
import subprocess
|
13 |
+
import torch
|
14 |
|
15 |
# 设置 Matplotlib 的缓存目录
|
16 |
os.environ['MPLCONFIGDIR'] = '/tmp/matplotlib'
|
|
|
23 |
|
24 |
|
25 |
|
26 |
+
URL = "https://39nlafviqvard82k6y8btq.c0.asia-southeast1.gcp.weaviate.cloud"
|
27 |
+
APIKEY = "Y7c8DRmcxZ4nP5IJLwkznIsK84l6EdwfXwcH"
|
28 |
+
|
29 |
+
# Connect to a WCS instance
|
30 |
+
client = weaviate.connect_to_wcs(
|
31 |
+
cluster_url=URL,
|
32 |
+
auth_credentials=weaviate.auth.AuthApiKey(APIKEY))
|
33 |
+
|
34 |
|
35 |
+
class_name="ad_database02"
|
36 |
|
37 |
+
device = torch.device(device='cuda' if torch.cuda.is_available() else 'cpu')
|
38 |
tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese")
|
39 |
model = AutoModel.from_pretrained("bert-base-chinese")
|
40 |
|
|
|
199 |
|
200 |
query_keywords = list(keywords_dict.keys())
|
201 |
#此处将max_matches作为距离变量
|
|
|
202 |
|
203 |
+
max_matches,top_keywords_list,top_summary = fetch_response_from_db(query_keywords,class_name)
|
204 |
|
205 |
|
206 |
print(f"max_matches: {max_matches}")
|
vec_db.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import weaviate
|
2 |
+
import pandas as pd
|
3 |
+
import torch
|
4 |
+
import json
|
5 |
+
from transformers import AutoTokenizer, AutoModel
|
6 |
+
import subprocess
|
7 |
+
import os
|
8 |
+
# 设置 Matplotlib 缓存目录为可写的目录
|
9 |
+
os.environ['MPLCONFIGDIR'] = '/tmp/matplotlib'
|
10 |
+
# 设置 Hugging Face Transformers 缓存目录为可写的目录
|
11 |
+
os.environ['TRANSFORMERS_CACHE'] = '/tmp/huggingface_cache'
|
12 |
+
#
|
13 |
+
# try:
|
14 |
+
# # 运行 Docker 容器的命令
|
15 |
+
# command = [
|
16 |
+
# "docker", "run",
|
17 |
+
# "-p", "8080:8080",
|
18 |
+
# "-p", "50051:50051",
|
19 |
+
# "cr.weaviate.io/semitechnologies/weaviate:1.24.20"
|
20 |
+
# ]
|
21 |
+
#
|
22 |
+
# # 执行命令
|
23 |
+
# subprocess.run(command, check=True)
|
24 |
+
# print("Docker container is running.")
|
25 |
+
#
|
26 |
+
# except subprocess.CalledProcessError as e:
|
27 |
+
# print(f"An error occurred: {e}")
|
28 |
+
|
29 |
+
class_name = 'Lhnjames123321'
|
30 |
+
auth_config = weaviate.AuthApiKey(api_key="8wNsHV3Enc2PNVL8Bspadh21qYAfAvnK2ux3")
|
31 |
+
client = weaviate.Client(
|
32 |
+
url="https://3a8sbx3s66by10yxginaa.c0.asia-southeast1.gcp.weaviate.cloud",
|
33 |
+
auth_client_secret=auth_config
|
34 |
+
)
|
35 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
36 |
+
model = AutoModel.from_pretrained("bert-base-chinese").to(device)
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese")
|
38 |
+
|
39 |
+
def encode_sentences(sentences, model, tokenizer, device):
|
40 |
+
inputs = tokenizer(sentences, return_tensors='pt', padding=True, truncation=True, max_length=512)
|
41 |
+
inputs.to(device)
|
42 |
+
with torch.no_grad():
|
43 |
+
outputs = model(**inputs)
|
44 |
+
embeddings = outputs.last_hidden_state.mean(dim=1)
|
45 |
+
return embeddings.cpu().numpy()
|
46 |
+
|
47 |
+
# def class_exists(client, class_name):
|
48 |
+
# existing_classes = client.schema.get_classes()
|
49 |
+
# return any(cls['class'] == class_name for cls in existing_classes)
|
50 |
+
|
51 |
+
def init_weaviate():
|
52 |
+
# if class_exists(client, class_name)==0:
|
53 |
+
# class_obj = {
|
54 |
+
# 'class': class_name,
|
55 |
+
# 'vectorIndexConfig': {
|
56 |
+
# 'distance': 'cosine'
|
57 |
+
# },
|
58 |
+
# }
|
59 |
+
# client.schema.create_class(class_obj)
|
60 |
+
|
61 |
+
file_path = 'data.json'
|
62 |
+
sentence_data = []
|
63 |
+
|
64 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
65 |
+
for line in f:
|
66 |
+
try:
|
67 |
+
data = json.loads(line.strip())
|
68 |
+
sentence1 = data.get('response', '')
|
69 |
+
sentence_data.append(sentence1)
|
70 |
+
except json.JSONDecodeError as e:
|
71 |
+
print(f"Error parsing JSON: {e}")
|
72 |
+
continue
|
73 |
+
|
74 |
+
sentence_embeddings = encode_sentences(sentence_data, model, tokenizer, device)
|
75 |
+
|
76 |
+
data = {'sentence': sentence_data,
|
77 |
+
'embeddings': sentence_embeddings.tolist()}
|
78 |
+
df = pd.DataFrame(data)
|
79 |
+
|
80 |
+
with client.batch(batch_size=100) as batch:
|
81 |
+
for i in range(df.shape[0]):
|
82 |
+
print(f'importing data: {i + 1}/{df.shape[0]}')
|
83 |
+
properties = {
|
84 |
+
'sentence_id': i + 1,
|
85 |
+
'sentence': df.sentence[i],
|
86 |
+
}
|
87 |
+
custom_vector = df.embeddings[i]
|
88 |
+
client.batch.add_data_object(
|
89 |
+
properties,
|
90 |
+
class_name=class_name,
|
91 |
+
vector=custom_vector
|
92 |
+
)
|
93 |
+
print('import completed')
|
94 |
+
|
95 |
+
|
96 |
+
def use_weaviate(input_str):
|
97 |
+
query = encode_sentences([input_str], model, tokenizer, device)[0].tolist()
|
98 |
+
nearVector = {
|
99 |
+
'vector': query
|
100 |
+
}
|
101 |
+
|
102 |
+
response = (
|
103 |
+
client.query
|
104 |
+
.get(class_name, ['sentence_id', 'sentence'])
|
105 |
+
.with_near_vector(nearVector)
|
106 |
+
.with_limit(5)
|
107 |
+
.with_additional(['distance'])
|
108 |
+
.do()
|
109 |
+
)
|
110 |
+
print(response)
|
111 |
+
results = response['data']['Get'][class_name]
|
112 |
+
text_list = [result['sentence'] for result in results]
|
113 |
+
return text_list
|
114 |
+
|
115 |
+
if __name__ == '__main__':
|
116 |
+
init_weaviate()
|
117 |
+
input_str = input("请输入查询的文本:")
|
118 |
+
ans = use_weaviate(input_str)
|
119 |
+
print("查询结果:", ans)
|