|
|
|
from __future__ import annotations |
|
|
|
import threading, time |
|
from dataclasses import dataclass |
|
from fractions import Fraction |
|
from typing import Optional, Dict, Tuple, List |
|
|
|
import numpy as np |
|
from magenta_rt import audio as au |
|
|
|
from utils import ( |
|
StreamingResampler, |
|
match_loudness_to_reference, |
|
make_bar_aligned_context, |
|
take_bar_aligned_tail, |
|
wav_bytes_base64, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
@dataclass |
|
class JamParams: |
|
bpm: float |
|
beats_per_bar: int |
|
bars_per_chunk: int |
|
target_sr: int |
|
loudness_mode: str = "auto" |
|
headroom_db: float = 1.0 |
|
style_vec: Optional[np.ndarray] = None |
|
ref_loop: Optional[au.Waveform] = None |
|
combined_loop: Optional[au.Waveform] = None |
|
guidance_weight: float = 1.1 |
|
temperature: float = 1.1 |
|
topk: int = 40 |
|
|
|
|
|
@dataclass |
|
class JamChunk: |
|
index: int |
|
audio_base64: str |
|
metadata: dict |
|
|
|
|
|
|
|
|
|
|
|
|
|
class BarClock: |
|
"""Sample-domain bar clock with drift-free absolute boundaries.""" |
|
def __init__(self, target_sr: int, bpm: float, beats_per_bar: int, base_offset_samples: int = 0): |
|
self.sr = int(target_sr) |
|
self.bpm = Fraction(str(bpm)) |
|
self.beats_per_bar = int(beats_per_bar) |
|
self.bar_samps = Fraction(self.sr * 60 * self.beats_per_bar, 1) / self.bpm |
|
self.base = int(base_offset_samples) |
|
|
|
def bounds_for_chunk(self, chunk_index: int, bars_per_chunk: int) -> Tuple[int, int]: |
|
start_f = self.base + self.bar_samps * (chunk_index * bars_per_chunk) |
|
end_f = self.base + self.bar_samps * ((chunk_index + 1) * bars_per_chunk) |
|
return int(round(start_f)), int(round(end_f)) |
|
|
|
def seconds_per_bar(self) -> float: |
|
return float(self.beats_per_bar) * (60.0 / float(self.bpm)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
class JamWorker(threading.Thread): |
|
"""Generates continuous audio with MagentaRT, spools it at target SR, |
|
and emits *sample-accurate*, bar-aligned chunks (no FPS drift).""" |
|
|
|
def __init__(self, mrt, params: JamParams): |
|
super().__init__(daemon=True) |
|
self.mrt = mrt |
|
self.params = params |
|
|
|
|
|
self._lock = threading.RLock() |
|
|
|
|
|
self.state = self.mrt.init_state() |
|
self.mrt.guidance_weight = float(self.params.guidance_weight) |
|
self.mrt.temperature = float(self.params.temperature) |
|
self.mrt.topk = int(self.params.topk) |
|
|
|
|
|
self._style_vec = self.params.style_vec |
|
|
|
|
|
self._codec_fps = float(self.mrt.codec.frame_rate) |
|
self._ctx_frames = int(self.mrt.config.context_length_frames) |
|
self._ctx_seconds = self._ctx_frames / self._codec_fps |
|
|
|
|
|
self._model_stream: Optional[np.ndarray] = None |
|
self._model_sr = int(self.mrt.sample_rate) |
|
|
|
|
|
self._rs = StreamingResampler(self._model_sr, int(self.params.target_sr), channels=2) |
|
self._spool = np.zeros((0, 2), dtype=np.float32) |
|
self._spool_written = 0 |
|
|
|
|
|
self._bar_clock = BarClock(self.params.target_sr, self.params.bpm, self.params.beats_per_bar, base_offset_samples=0) |
|
|
|
|
|
self.idx = 0 |
|
self._next_to_deliver = 0 |
|
self._last_consumed_index = -1 |
|
|
|
|
|
self._outbox: Dict[int, JamChunk] = {} |
|
self._cv = threading.Condition() |
|
|
|
|
|
self._stop_event = threading.Event() |
|
self._max_buffer_ahead = 5 |
|
|
|
|
|
self._pending_reseed: Optional[dict] = None |
|
|
|
|
|
if self.params.combined_loop is not None: |
|
self._install_context_from_loop(self.params.combined_loop) |
|
|
|
|
|
|
|
def stop(self): |
|
self._stop_event.set() |
|
|
|
|
|
def get_next_chunk(self, timeout: float = 30.0) -> Optional[JamChunk]: |
|
deadline = time.time() + timeout |
|
with self._cv: |
|
while True: |
|
c = self._outbox.get(self._next_to_deliver) |
|
if c is not None: |
|
self._next_to_deliver += 1 |
|
return c |
|
remaining = deadline - time.time() |
|
if remaining <= 0: |
|
return None |
|
self._cv.wait(timeout=min(0.25, remaining)) |
|
|
|
def mark_chunk_consumed(self, chunk_index: int): |
|
|
|
with self._cv: |
|
self._last_consumed_index = max(self._last_consumed_index, int(chunk_index)) |
|
|
|
for k in list(self._outbox.keys()): |
|
if k < self._last_consumed_index - 1: |
|
self._outbox.pop(k, None) |
|
|
|
def update_knobs(self, *, guidance_weight=None, temperature=None, topk=None): |
|
with self._lock: |
|
if guidance_weight is not None: |
|
self.params.guidance_weight = float(guidance_weight) |
|
if temperature is not None: |
|
self.params.temperature = float(temperature) |
|
if topk is not None: |
|
self.params.topk = int(topk) |
|
|
|
self.mrt.guidance_weight = float(self.params.guidance_weight) |
|
self.mrt.temperature = float(self.params.temperature) |
|
self.mrt.topk = int(self.params.topk) |
|
|
|
|
|
|
|
def _encode_exact_context_tokens(self, loop: au.Waveform) -> np.ndarray: |
|
"""Build *exactly* context_length_frames worth of tokens (e.g., 250 @ 25fps), |
|
while ensuring the *end* of the audio lands on a bar boundary. |
|
Strategy: take the largest integer number of bars <= ctx_seconds as the tail, |
|
then left-fill from just before that tail (wrapping if needed) to reach exactly |
|
ctx_seconds; finally, pad/trim to exact samples and, as a last resort, pad/trim |
|
tokens to the expected frame count. |
|
""" |
|
wav = loop.as_stereo().resample(self._model_sr) |
|
data = wav.samples.astype(np.float32, copy=False) |
|
if data.ndim == 1: |
|
data = data[:, None] |
|
|
|
spb = self._bar_clock.seconds_per_bar() |
|
ctx_sec = float(self._ctx_seconds) |
|
sr = int(self._model_sr) |
|
|
|
|
|
bars_fit = max(1, int(ctx_sec // spb)) |
|
tail_len_samps = int(round(bars_fit * spb * sr)) |
|
|
|
|
|
need = int(round(ctx_sec * sr)) + tail_len_samps |
|
if data.shape[0] == 0: |
|
data = np.zeros((1, 2), dtype=np.float32) |
|
reps = int(np.ceil(need / float(data.shape[0]))) |
|
tiled = np.tile(data, (reps, 1)) |
|
|
|
end = tiled.shape[0] |
|
tail = tiled[end - tail_len_samps:end] |
|
|
|
|
|
ctx_samps = int(round(ctx_sec * sr)) |
|
pad_len = ctx_samps - tail.shape[0] |
|
if pad_len > 0: |
|
pre = tiled[end - tail_len_samps - pad_len:end - tail_len_samps] |
|
ctx = np.concatenate([pre, tail], axis=0) |
|
else: |
|
ctx = tail[-ctx_samps:] |
|
|
|
|
|
if ctx.shape[0] < ctx_samps: |
|
pad = np.zeros((ctx_samps - ctx.shape[0], ctx.shape[1]), dtype=np.float32) |
|
ctx = np.concatenate([pad, ctx], axis=0) |
|
elif ctx.shape[0] > ctx_samps: |
|
ctx = ctx[-ctx_samps:] |
|
|
|
exact = au.Waveform(ctx, sr) |
|
tokens_full = self.mrt.codec.encode(exact).astype(np.int32) |
|
depth = int(self.mrt.config.decoder_codec_rvq_depth) |
|
tokens = tokens_full[:, :depth] |
|
|
|
|
|
frames = tokens.shape[0] |
|
exp = int(self._ctx_frames) |
|
if frames < exp: |
|
|
|
pad = np.repeat(tokens[-1:, :], exp - frames, axis=0) |
|
tokens = np.concatenate([pad, tokens], axis=0) |
|
elif frames > exp: |
|
tokens = tokens[-exp:, :] |
|
return tokens |
|
|
|
|
|
def _install_context_from_loop(self, loop: au.Waveform): |
|
|
|
context_tokens = self._encode_exact_context_tokens(loop) |
|
s = self.mrt.init_state() |
|
s.context_tokens = context_tokens |
|
self.state = s |
|
self._original_context_tokens = np.copy(context_tokens) |
|
|
|
def reseed_from_waveform(self, wav: au.Waveform): |
|
"""Immediate reseed: replace context from provided wave (bar-locked, exact length).""" |
|
context_tokens = self._encode_exact_context_tokens(wav) |
|
with self._lock: |
|
s = self.mrt.init_state() |
|
s.context_tokens = context_tokens |
|
self.state = s |
|
self._model_stream = None |
|
self._original_context_tokens = np.copy(context_tokens) |
|
|
|
def reseed_splice(self, recent_wav: au.Waveform, anchor_bars: float): |
|
"""Queue a splice reseed to be applied right after the next emitted loop.""" |
|
new_ctx = self._encode_exact_context_tokens(recent_wav) |
|
with self._lock: |
|
self._pending_reseed = {"ctx": new_ctx} |
|
|
|
|
|
def reseed_from_waveform(self, wav: au.Waveform): |
|
"""Immediate reseed: replace context from provided wave (bar-aligned tail).""" |
|
wav = wav.as_stereo().resample(self._model_sr) |
|
tail = take_bar_aligned_tail(wav, self.params.bpm, self.params.beats_per_bar, self._ctx_seconds) |
|
tokens_full = self.mrt.codec.encode(tail).astype(np.int32) |
|
depth = int(self.mrt.config.decoder_codec_rvq_depth) |
|
context_tokens = tokens_full[:, :depth] |
|
|
|
s = self.mrt.init_state() |
|
s.context_tokens = context_tokens |
|
self.state = s |
|
|
|
self._model_stream = None |
|
|
|
|
|
|
|
|
|
self._original_context_tokens = np.copy(context_tokens) |
|
|
|
def reseed_splice(self, recent_wav: au.Waveform, anchor_bars: float): |
|
"""Queue a splice reseed to be applied right after the next emitted loop. |
|
For now, we simply replace the context by recent wave tail; anchor is accepted |
|
for API compatibility and future crossfade/token-splice logic.""" |
|
recent_wav = recent_wav.as_stereo().resample(self._model_sr) |
|
tail = take_bar_aligned_tail(recent_wav, self.params.bpm, self.params.beats_per_bar, self._ctx_seconds) |
|
tokens_full = self.mrt.codec.encode(tail).astype(np.int32) |
|
depth = int(self.mrt.config.decoder_codec_rvq_depth) |
|
new_ctx = tokens_full[:, :depth] |
|
self._pending_reseed = {"ctx": new_ctx} |
|
|
|
|
|
|
|
def _append_model_chunk_and_spool(self, wav: au.Waveform): |
|
"""Crossfade into the model-rate stream and write the *non-overlapped* |
|
tail to the target-SR spool.""" |
|
s = wav.samples.astype(np.float32, copy=False) |
|
if s.ndim == 1: |
|
s = s[:, None] |
|
sr = self._model_sr |
|
xfade_s = float(self.mrt.config.crossfade_length) |
|
xfade_n = int(round(max(0.0, xfade_s) * sr)) |
|
|
|
if self._model_stream is None: |
|
|
|
new_part = s[xfade_n:] if xfade_n < s.shape[0] else s[:0] |
|
self._model_stream = new_part.copy() |
|
if new_part.size: |
|
y = self._rs.process(new_part, final=False) |
|
self._spool = np.concatenate([self._spool, y], axis=0) |
|
self._spool_written += y.shape[0] |
|
return |
|
|
|
|
|
if xfade_n > 0 and self._model_stream.shape[0] >= xfade_n and s.shape[0] >= xfade_n: |
|
tail = self._model_stream[-xfade_n:] |
|
head = s[:xfade_n] |
|
t = np.linspace(0, np.pi/2, xfade_n, endpoint=False, dtype=np.float32)[:, None] |
|
mixed = tail * np.cos(t) + head * np.sin(t) |
|
self._model_stream = np.concatenate([self._model_stream[:-xfade_n], mixed, s[xfade_n:]], axis=0) |
|
new_part = s[xfade_n:] |
|
else: |
|
self._model_stream = np.concatenate([self._model_stream, s], axis=0) |
|
new_part = s |
|
|
|
|
|
if new_part.size: |
|
y = self._rs.process(new_part.astype(np.float32, copy=False), final=False) |
|
if y.size: |
|
self._spool = np.concatenate([self._spool, y], axis=0) |
|
self._spool_written += y.shape[0] |
|
|
|
def _should_generate_next_chunk(self) -> bool: |
|
|
|
|
|
implicit_consumed = self._next_to_deliver - 1 |
|
horizon_anchor = max(self._last_consumed_index, implicit_consumed) |
|
return self.idx <= (horizon_anchor + self._max_buffer_ahead) |
|
|
|
def _emit_ready(self): |
|
"""Emit next chunk(s) if the spool has enough samples.""" |
|
while True: |
|
start, end = self._bar_clock.bounds_for_chunk(self.idx, self.params.bars_per_chunk) |
|
if end > self._spool_written: |
|
break |
|
loop = self._spool[start:end] |
|
|
|
|
|
if self.params.ref_loop is not None and self.params.loudness_mode != "none": |
|
ref = self.params.ref_loop.as_stereo().resample(self.params.target_sr) |
|
wav = au.Waveform(loop.copy(), int(self.params.target_sr)) |
|
matched, _ = match_loudness_to_reference(ref, wav, method=self.params.loudness_mode, headroom_db=self.params.headroom_db) |
|
loop = matched.samples |
|
|
|
audio_b64, total_samples, channels = wav_bytes_base64(loop, int(self.params.target_sr)) |
|
meta = { |
|
"bpm": float(self.params.bpm), |
|
"bars": int(self.params.bars_per_chunk), |
|
"beats_per_bar": int(self.params.beats_per_bar), |
|
"sample_rate": int(self.params.target_sr), |
|
"channels": int(channels), |
|
"total_samples": int(total_samples), |
|
"seconds_per_bar": self._bar_clock.seconds_per_bar(), |
|
"loop_duration_seconds": self.params.bars_per_chunk * self._bar_clock.seconds_per_bar(), |
|
"guidance_weight": float(self.params.guidance_weight), |
|
"temperature": float(self.params.temperature), |
|
"topk": int(self.params.topk), |
|
} |
|
chunk = JamChunk(index=self.idx, audio_base64=audio_b64, metadata=meta) |
|
|
|
with self._cv: |
|
self._outbox[self.idx] = chunk |
|
self._cv.notify_all() |
|
self.idx += 1 |
|
|
|
|
|
with self._lock: |
|
if self._pending_reseed is not None: |
|
new_state = self.mrt.init_state() |
|
new_state.context_tokens = self._pending_reseed["ctx"] |
|
self.state = new_state |
|
self._model_stream = None |
|
self._pending_reseed = None |
|
|
|
|
|
|
|
def run(self): |
|
|
|
while not self._stop_event.is_set(): |
|
|
|
if not self._should_generate_next_chunk(): |
|
|
|
self._emit_ready() |
|
time.sleep(0.01) |
|
continue |
|
|
|
|
|
|
|
with self._lock: |
|
style_vec = self.params.style_vec |
|
wav, self.state = self.mrt.generate_chunk(state=self.state, style=style_vec) |
|
|
|
self._append_model_chunk_and_spool(wav) |
|
|
|
self._emit_ready() |
|
|
|
|
|
tail = self._rs.process(np.zeros((0,2), np.float32), final=True) |
|
if tail.size: |
|
self._spool = np.concatenate([self._spool, tail], axis=0) |
|
self._spool_written += tail.shape[0] |
|
|
|
self._emit_ready() |
|
|