Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ import pandas as pd
|
|
5 |
import matplotlib.pyplot as plt
|
6 |
import seaborn as sns
|
7 |
import os
|
|
|
8 |
|
9 |
# OpenRouter API Key (Replace with yours)
|
10 |
OPENROUTER_API_KEY = "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"
|
@@ -20,56 +21,65 @@ if not os.path.exists(DB_PATH):
|
|
20 |
# Initialize OpenAI client
|
21 |
openai_client = openai.OpenAI(api_key=OPENROUTER_API_KEY, base_url="https://openrouter.ai/api/v1")
|
22 |
|
23 |
-
#
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
# Function: Convert text to SQL
|
31 |
-
def text_to_sql(query):
|
32 |
-
prompt =
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
37 |
try:
|
38 |
response = openai_client.chat.completions.create(
|
39 |
model=OPENROUTER_MODEL,
|
40 |
messages=[{"role": "system", "content": "You are an SQL expert."}, {"role": "user", "content": prompt}]
|
41 |
)
|
42 |
sql_query = response.choices[0].message.content.strip()
|
43 |
-
|
44 |
-
# Ensure only one query is returned (remove extra text)
|
45 |
-
sql_query = sql_query.split("\n")[0].strip()
|
46 |
return sql_query
|
47 |
except Exception as e:
|
48 |
return f"Error: {e}"
|
49 |
|
50 |
# Function: Execute SQL on SQLite database
|
51 |
-
def execute_sql(sql_query):
|
52 |
try:
|
53 |
conn = sqlite3.connect(DB_PATH)
|
54 |
df = pd.read_sql_query(sql_query, conn)
|
55 |
conn.close()
|
56 |
-
return df
|
57 |
except Exception as e:
|
58 |
-
return f"SQL Execution Error: {e}"
|
59 |
|
60 |
# Function: Generate Dynamic Visualization
|
61 |
-
def visualize_data(df):
|
62 |
if df.empty or df.shape[1] < 2:
|
63 |
return None
|
64 |
|
|
|
|
|
|
|
65 |
# Detect numeric columns
|
66 |
numeric_cols = df.select_dtypes(include=['number']).columns
|
67 |
if len(numeric_cols) < 1:
|
68 |
return None
|
69 |
|
70 |
-
plt.figure(figsize=(6, 4))
|
71 |
-
sns.set_theme(style="darkgrid")
|
72 |
-
|
73 |
# Choose visualization type dynamically
|
74 |
if len(numeric_cols) == 1: # Single numeric column, assume it's a count metric
|
75 |
sns.histplot(df[numeric_cols[0]], bins=10, kde=True, color="teal")
|
@@ -90,13 +100,16 @@ def visualize_data(df):
|
|
90 |
return "chart.png"
|
91 |
|
92 |
# Gradio UI
|
93 |
-
def gradio_ui(query):
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
100 |
with gr.Blocks() as demo:
|
101 |
gr.Markdown("## SQL Explorer: Text-to-SQL with Real Execution & Visualization")
|
102 |
query_input = gr.Textbox(label="Enter your query", placeholder="e.g., Show all products sold in 2018.")
|
@@ -107,5 +120,4 @@ with gr.Blocks() as demo:
|
|
107 |
|
108 |
submit_btn.click(gradio_ui, inputs=[query_input], outputs=[sql_output, table_output, chart_output])
|
109 |
|
110 |
-
|
111 |
-
demo.launch()
|
|
|
5 |
import matplotlib.pyplot as plt
|
6 |
import seaborn as sns
|
7 |
import os
|
8 |
+
from typing import Optional, Tuple
|
9 |
|
10 |
# OpenRouter API Key (Replace with yours)
|
11 |
OPENROUTER_API_KEY = "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"
|
|
|
21 |
# Initialize OpenAI client
|
22 |
openai_client = openai.OpenAI(api_key=OPENROUTER_API_KEY, base_url="https://openrouter.ai/api/v1")
|
23 |
|
24 |
+
# Function: Fetch database schema
|
25 |
+
def fetch_schema(db_path: str) -> str:
|
26 |
+
conn = sqlite3.connect(db_path)
|
27 |
+
cursor = conn.cursor()
|
28 |
+
cursor.execute("SELECT name FROM sqlite_master WHERE type='table';")
|
29 |
+
tables = cursor.fetchall()
|
30 |
+
schema = ""
|
31 |
+
for table in tables:
|
32 |
+
table_name = table[0]
|
33 |
+
cursor.execute(f"PRAGMA table_info({table_name});")
|
34 |
+
columns = cursor.fetchall()
|
35 |
+
schema += f"Table: {table_name}\n"
|
36 |
+
for column in columns:
|
37 |
+
schema += f" Column: {column[1]}, Type: {column[2]}\n"
|
38 |
+
conn.close()
|
39 |
+
return schema
|
40 |
|
41 |
# Function: Convert text to SQL
|
42 |
+
def text_to_sql(query: str, schema: str) -> str:
|
43 |
+
prompt = (
|
44 |
+
"You are an SQL expert. Given the following database schema:\n\n"
|
45 |
+
f"{schema}\n\n"
|
46 |
+
"Convert the following query into SQL:\n\n"
|
47 |
+
f"Query: {query}\n"
|
48 |
+
"SQL:"
|
49 |
+
)
|
50 |
try:
|
51 |
response = openai_client.chat.completions.create(
|
52 |
model=OPENROUTER_MODEL,
|
53 |
messages=[{"role": "system", "content": "You are an SQL expert."}, {"role": "user", "content": prompt}]
|
54 |
)
|
55 |
sql_query = response.choices[0].message.content.strip()
|
|
|
|
|
|
|
56 |
return sql_query
|
57 |
except Exception as e:
|
58 |
return f"Error: {e}"
|
59 |
|
60 |
# Function: Execute SQL on SQLite database
|
61 |
+
def execute_sql(sql_query: str) -> Tuple[Optional[pd.DataFrame], Optional[str]]:
|
62 |
try:
|
63 |
conn = sqlite3.connect(DB_PATH)
|
64 |
df = pd.read_sql_query(sql_query, conn)
|
65 |
conn.close()
|
66 |
+
return df, None
|
67 |
except Exception as e:
|
68 |
+
return None, f"SQL Execution Error: {e}"
|
69 |
|
70 |
# Function: Generate Dynamic Visualization
|
71 |
+
def visualize_data(df: pd.DataFrame) -> Optional[str]:
|
72 |
if df.empty or df.shape[1] < 2:
|
73 |
return None
|
74 |
|
75 |
+
plt.figure(figsize=(6, 4))
|
76 |
+
sns.set_theme(style="darkgrid")
|
77 |
+
|
78 |
# Detect numeric columns
|
79 |
numeric_cols = df.select_dtypes(include=['number']).columns
|
80 |
if len(numeric_cols) < 1:
|
81 |
return None
|
82 |
|
|
|
|
|
|
|
83 |
# Choose visualization type dynamically
|
84 |
if len(numeric_cols) == 1: # Single numeric column, assume it's a count metric
|
85 |
sns.histplot(df[numeric_cols[0]], bins=10, kde=True, color="teal")
|
|
|
100 |
return "chart.png"
|
101 |
|
102 |
# Gradio UI
|
103 |
+
def gradio_ui(query: str) -> Tuple[str, str, Optional[str]]:
|
104 |
+
schema = fetch_schema(DB_PATH)
|
105 |
+
sql_query = text_to_sql(query, schema)
|
106 |
+
df, error = execute_sql(sql_query)
|
107 |
+
if error:
|
108 |
+
return sql_query, error, None
|
109 |
+
visualization = visualize_data(df) if df is not None else None
|
110 |
+
return sql_query, df.to_string(index=False), visualization
|
111 |
+
|
112 |
+
# Launch Gradio App
|
113 |
with gr.Blocks() as demo:
|
114 |
gr.Markdown("## SQL Explorer: Text-to-SQL with Real Execution & Visualization")
|
115 |
query_input = gr.Textbox(label="Enter your query", placeholder="e.g., Show all products sold in 2018.")
|
|
|
120 |
|
121 |
submit_btn.click(gradio_ui, inputs=[query_input], outputs=[sql_output, table_output, chart_output])
|
122 |
|
123 |
+
demo.launch()
|
|