Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -10,26 +10,33 @@ import os
|
|
10 |
OPENROUTER_API_KEY = "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"
|
11 |
OPENROUTER_MODEL = "sophosympatheia/rogue-rose-103b-v0.2:free"
|
12 |
|
13 |
-
|
14 |
-
|
|
|
15 |
|
16 |
# Ensure dataset exists
|
17 |
-
if not os.path.exists(
|
18 |
-
|
19 |
|
20 |
# Initialize OpenAI client
|
21 |
openai_client = openai.OpenAI(api_key=OPENROUTER_API_KEY, base_url="https://openrouter.ai/api/v1")
|
22 |
|
23 |
-
# Few-
|
24 |
few_shot_examples = [
|
25 |
-
{"input": "
|
26 |
-
|
27 |
-
{"input": "
|
|
|
|
|
|
|
|
|
|
|
28 |
]
|
29 |
|
30 |
-
# Function: Convert
|
|
|
31 |
def text_to_sql(query):
|
32 |
-
prompt = "Convert the following queries into SQL:\n\n"
|
33 |
for example in few_shot_examples:
|
34 |
prompt += f"Input: {example['input']}\nOutput: {example['output']}\n\n"
|
35 |
prompt += f"Input: {query}\nOutput:"
|
@@ -37,33 +44,31 @@ def text_to_sql(query):
|
|
37 |
try:
|
38 |
response = openai_client.chat.completions.create(
|
39 |
model=OPENROUTER_MODEL,
|
40 |
-
messages=[{"role": "system", "content": "You are an
|
|
|
41 |
)
|
42 |
sql_query = response.choices[0].message.content.strip()
|
43 |
-
sql_query
|
44 |
-
sql_query = sql_query.replace("mathchar", "").rstrip(";") # Remove unwanted text
|
45 |
-
return sql_query
|
46 |
except Exception as e:
|
47 |
return f"Error: {e}"
|
48 |
|
49 |
-
# Function: Execute SQL on SQLite
|
|
|
50 |
def execute_sql(sql_query):
|
51 |
try:
|
52 |
-
|
53 |
-
sql_query = sql_query.replace("mathchar", "") # Remove any bad tokens
|
54 |
-
conn = sqlite3.connect(DB_PATH)
|
55 |
df = pd.read_sql_query(sql_query, conn)
|
56 |
conn.close()
|
57 |
return df
|
58 |
except Exception as e:
|
59 |
return f"SQL Execution Error: {e}"
|
60 |
|
61 |
-
# Function: Generate
|
|
|
62 |
def visualize_data(df):
|
63 |
if df.empty or df.shape[1] < 2:
|
64 |
return None
|
65 |
|
66 |
-
# Detect numeric columns
|
67 |
numeric_cols = df.select_dtypes(include=['number']).columns
|
68 |
if len(numeric_cols) < 1:
|
69 |
return None
|
@@ -71,17 +76,16 @@ def visualize_data(df):
|
|
71 |
plt.figure(figsize=(6, 4))
|
72 |
sns.set_theme(style="darkgrid")
|
73 |
|
74 |
-
|
75 |
-
if len(numeric_cols) == 1: # Single numeric column, assume it's a count metric
|
76 |
sns.histplot(df[numeric_cols[0]], bins=10, kde=True, color="teal")
|
77 |
plt.title(f"Distribution of {numeric_cols[0]}")
|
78 |
-
elif len(numeric_cols) == 2:
|
79 |
sns.scatterplot(x=df[numeric_cols[0]], y=df[numeric_cols[1]], color="blue")
|
80 |
plt.title(f"{numeric_cols[0]} vs {numeric_cols[1]}")
|
81 |
-
elif df.shape[0] < 10:
|
82 |
plt.pie(df[numeric_cols[0]], labels=df.iloc[:, 0], autopct='%1.1f%%', colors=sns.color_palette("pastel"))
|
83 |
plt.title(f"Proportion of {numeric_cols[0]}")
|
84 |
-
else:
|
85 |
sns.barplot(x=df.iloc[:, 0], y=df[numeric_cols[0]], palette="coolwarm")
|
86 |
plt.xticks(rotation=45)
|
87 |
plt.title(f"{df.columns[0]} vs {numeric_cols[0]}")
|
|
|
10 |
OPENROUTER_API_KEY = "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"
|
11 |
OPENROUTER_MODEL = "sophosympatheia/rogue-rose-103b-v0.2:free"
|
12 |
|
13 |
+
|
14 |
+
# Database Path
|
15 |
+
db_path = "ecommerce.db"
|
16 |
|
17 |
# Ensure dataset exists
|
18 |
+
if not os.path.exists(db_path):
|
19 |
+
print("Database file not found! Please upload ecommerce.db.")
|
20 |
|
21 |
# Initialize OpenAI client
|
22 |
openai_client = openai.OpenAI(api_key=OPENROUTER_API_KEY, base_url="https://openrouter.ai/api/v1")
|
23 |
|
24 |
+
# Updated Few-Shot Examples with SQLite-Compatible Queries
|
25 |
few_shot_examples = [
|
26 |
+
{"input": "Find the busiest months for orders.",
|
27 |
+
"output": "SELECT strftime('%m', order_purchase_timestamp) AS month, COUNT(*) AS order_count FROM orders GROUP BY month ORDER BY order_count DESC;"},
|
28 |
+
{"input": "Show all customers from São Paulo.",
|
29 |
+
"output": "SELECT * FROM customers WHERE customer_state = 'SP';"},
|
30 |
+
{"input": "Find the total sales per product.",
|
31 |
+
"output": "SELECT product_id, SUM(price) FROM order_items GROUP BY product_id;"},
|
32 |
+
{"input": "List all orders placed in 2017.",
|
33 |
+
"output": "SELECT * FROM orders WHERE order_purchase_timestamp LIKE '2017%';"}
|
34 |
]
|
35 |
|
36 |
+
# Function: Convert Text to SQL
|
37 |
+
|
38 |
def text_to_sql(query):
|
39 |
+
prompt = "Convert the following queries into SQLite-compatible SQL:\n\n"
|
40 |
for example in few_shot_examples:
|
41 |
prompt += f"Input: {example['input']}\nOutput: {example['output']}\n\n"
|
42 |
prompt += f"Input: {query}\nOutput:"
|
|
|
44 |
try:
|
45 |
response = openai_client.chat.completions.create(
|
46 |
model=OPENROUTER_MODEL,
|
47 |
+
messages=[{"role": "system", "content": "You are an SQLite expert."},
|
48 |
+
{"role": "user", "content": prompt}]
|
49 |
)
|
50 |
sql_query = response.choices[0].message.content.strip()
|
51 |
+
return sql_query if sql_query.lower().startswith("select") else f"Error: Invalid SQL generated - {sql_query}"
|
|
|
|
|
52 |
except Exception as e:
|
53 |
return f"Error: {e}"
|
54 |
|
55 |
+
# Function: Execute SQL on SQLite Database
|
56 |
+
|
57 |
def execute_sql(sql_query):
|
58 |
try:
|
59 |
+
conn = sqlite3.connect(db_path)
|
|
|
|
|
60 |
df = pd.read_sql_query(sql_query, conn)
|
61 |
conn.close()
|
62 |
return df
|
63 |
except Exception as e:
|
64 |
return f"SQL Execution Error: {e}"
|
65 |
|
66 |
+
# Function: Generate Data Visualization
|
67 |
+
|
68 |
def visualize_data(df):
|
69 |
if df.empty or df.shape[1] < 2:
|
70 |
return None
|
71 |
|
|
|
72 |
numeric_cols = df.select_dtypes(include=['number']).columns
|
73 |
if len(numeric_cols) < 1:
|
74 |
return None
|
|
|
76 |
plt.figure(figsize=(6, 4))
|
77 |
sns.set_theme(style="darkgrid")
|
78 |
|
79 |
+
if len(numeric_cols) == 1:
|
|
|
80 |
sns.histplot(df[numeric_cols[0]], bins=10, kde=True, color="teal")
|
81 |
plt.title(f"Distribution of {numeric_cols[0]}")
|
82 |
+
elif len(numeric_cols) == 2:
|
83 |
sns.scatterplot(x=df[numeric_cols[0]], y=df[numeric_cols[1]], color="blue")
|
84 |
plt.title(f"{numeric_cols[0]} vs {numeric_cols[1]}")
|
85 |
+
elif df.shape[0] < 10:
|
86 |
plt.pie(df[numeric_cols[0]], labels=df.iloc[:, 0], autopct='%1.1f%%', colors=sns.color_palette("pastel"))
|
87 |
plt.title(f"Proportion of {numeric_cols[0]}")
|
88 |
+
else:
|
89 |
sns.barplot(x=df.iloc[:, 0], y=df[numeric_cols[0]], palette="coolwarm")
|
90 |
plt.xticks(rotation=45)
|
91 |
plt.title(f"{df.columns[0]} vs {numeric_cols[0]}")
|