TeaRAG / app.py
thechaiexperiment's picture
Update app.py
ad1a600 verified
import transformers
import pickle
import os
import re
import numpy as np
import torchvision
import nltk
import torch
import pandas as pd
import requests
import zipfile
import tempfile
from openai import OpenAI
from PyPDF2 import PdfReader
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from transformers import (
AutoTokenizer,
AutoModelForSeq2SeqLM,
AutoModelForTokenClassification,
AutoModelForCausalLM,
pipeline,
Qwen2Tokenizer,
BartForConditionalGeneration
)
from sentence_transformers import SentenceTransformer, CrossEncoder, util
from sklearn.metrics.pairwise import cosine_similarity
from bs4 import BeautifulSoup
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from typing import List, Dict, Optional
from safetensors.numpy import load_file
from safetensors.torch import safe_open
nltk.download('punkt_tab')
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
models = {}
data = {}
class QueryRequest(BaseModel):
query: str
language_code: int = 1
class MedicalProfile(BaseModel):
conditions: str
daily_symptoms: str
count: int
class ChatQuery(BaseModel):
query: str
language_code: int = 1
#conversation_id: str
class ChatMessage(BaseModel):
role: str
content: str
timestamp: str
def init_nltk():
try:
nltk.download('punkt', quiet=True)
return True
except Exception as e:
print(f"Error initializing NLTK: {e}")
return False
def load_models():
try:
print("Loading models...")
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Device set to use {device}")
models['embedding_model'] = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
models['cross_encoder'] = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', max_length=512)
models['semantic_model'] = SentenceTransformer('all-MiniLM-L6-v2')
models['ar_to_en_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
models['ar_to_en_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
models['en_to_ar_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
models['en_to_ar_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
models['att_tokenizer'] = AutoTokenizer.from_pretrained("facebook/bart-base")
models['att_model'] = BartForConditionalGeneration.from_pretrained("facebook/bart-base")
models['bio_tokenizer'] = AutoTokenizer.from_pretrained("blaze999/Medical-NER")
models['bio_model'] = AutoModelForTokenClassification.from_pretrained("blaze999/Medical-NER")
models['ner_pipeline'] = pipeline("ner", model=models['bio_model'], tokenizer=models['bio_tokenizer'])
model_name = "M4-ai/Orca-2.0-Tau-1.8B"
models['llm_tokenizer'] = AutoTokenizer.from_pretrained(model_name)
models['llm_model'] = AutoModelForCausalLM.from_pretrained(model_name)
models['gen_tokenizer'] = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM-1.7B-Instruct")
models['gen_model'] = AutoModelForCausalLM.from_pretrained("HuggingFaceTB/SmolLM-1.7B-Instruct")
print("Models loaded successfully")
return True
except Exception as e:
print(f"Error loading models: {e}")
return False
def load_embeddings() -> Optional[Dict[str, np.ndarray]]:
try:
embeddings_path = 'embeddings.safetensors'
if not os.path.exists(embeddings_path):
print("File not found locally. Attempting to download from Hugging Face Hub...")
embeddings_path = hf_hub_download(
repo_id=os.environ.get('HF_SPACE_ID', 'thechaiexperiment/TeaRAG'),
filename="embeddings.safetensors",
repo_type="space"
)
embeddings = {}
with safe_open(embeddings_path, framework="pt") as f:
keys = f.keys()
for key in keys:
try:
tensor = f.get_tensor(key)
if not isinstance(tensor, torch.Tensor):
raise TypeError(f"Value for key {key} is not a valid PyTorch tensor.")
embeddings[key] = tensor.numpy()
except Exception as key_error:
print(f"Failed to process key {key}: {key_error}")
if embeddings:
print("Embeddings successfully loaded.")
else:
print("No embeddings could be loaded. Please check the file format and content.")
return embeddings
except Exception as e:
print(f"Error loading embeddings: {e}")
return None
def normalize_key(key: str) -> str:
match = re.search(r'file_(\d+)', key)
if match:
return match.group(1)
return key
def load_recipes_embeddings() -> Optional[np.ndarray]:
try:
embeddings_path = 'recipes_embeddings.safetensors'
if not os.path.exists(embeddings_path):
print("File not found locally. Attempting to download from Hugging Face Hub...")
embeddings_path = hf_hub_download(
repo_id=os.environ.get('HF_SPACE_ID', 'thechaiexperiment/TeaRAG'),
filename="embeddings.safetensors",
repo_type="space"
)
embeddings = load_file(embeddings_path)
if "embeddings" not in embeddings:
raise ValueError("Key 'embeddings' not found in the safetensors file.")
tensor = embeddings["embeddings"]
print(f"Successfully loaded embeddings.")
print(f"Shape of embeddings: {tensor.shape}")
print(f"Dtype of embeddings: {tensor.dtype}")
print(f"First few values of the first embedding: {tensor[0][:5]}")
return tensor
except Exception as e:
print(f"Error loading embeddings: {e}")
return None
def load_documents_data(folder_path='downloaded_articles/downloaded_articles'):
try:
print("Loading documents data...")
if not os.path.exists(folder_path) or not os.path.isdir(folder_path):
print(f"Error: Folder '{folder_path}' not found")
return False
html_files = [f for f in os.listdir(folder_path) if f.endswith('.html')]
if not html_files:
print(f"No HTML files found in folder '{folder_path}'")
return False
documents = []
for file_name in html_files:
file_path = os.path.join(folder_path, file_name)
try:
with open(file_path, 'r', encoding='utf-8') as file:
soup = BeautifulSoup(file, 'html.parser')
text = soup.get_text(separator='\n').strip()
documents.append({"file_name": file_name, "content": text})
except Exception as e:
print(f"Error reading file {file_name}: {e}")
data['df'] = pd.DataFrame(documents)
if data['df'].empty:
print("No valid documents loaded.")
return False
print(f"Successfully loaded {len(data['df'])} document records.")
return True
except Exception as e:
print(f"Error loading docs: {e}")
return None
def load_data():
embeddings_success = load_embeddings()
documents_success = load_documents_data()
if not embeddings_success:
print("Warning: Failed to load embeddings, falling back to basic functionality")
if not documents_success:
print("Warning: Failed to load documents data, falling back to basic functionality")
return True
print("Initializing application...")
init_success = load_models() and load_data()
def translate_text(text, source_to_target='ar_to_en'):
try:
if source_to_target == 'ar_to_en':
tokenizer = models['ar_to_en_tokenizer']
model = models['ar_to_en_model']
else:
tokenizer = models['en_to_ar_tokenizer']
model = models['en_to_ar_model']
inputs = tokenizer(text, return_tensors="pt", truncation=True)
outputs = model.generate(**inputs)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
print(f"Translation error: {e}")
return text
def embed_query_text(query_text):
embedding = models['embedding_model']
query_embedding = embedding.encode([query_text])
return query_embedding
def query_embeddings(query_embedding, embeddings_data, n_results):
embeddings_data = load_embeddings()
if not embeddings_data:
print("No embeddings data available.")
return []
try:
doc_ids = list(embeddings_data.keys())
doc_embeddings = np.array(list(embeddings_data.values()))
similarities = cosine_similarity(query_embedding, doc_embeddings).flatten()
top_indices = similarities.argsort()[-n_results:][::-1]
return [(doc_ids[i], similarities[i]) for i in top_indices]
except Exception as e:
print(f"Error in query_embeddings: {e}")
return []
def query_recipes_embeddings(query_embedding, embeddings_data, n_results):
embeddings_data = load_recipes_embeddings()
if embeddings_data is None:
print("No embeddings data available.")
return []
try:
if query_embedding.ndim == 1:
query_embedding = query_embedding.reshape(1, -1)
similarities = cosine_similarity(query_embedding, embeddings_data).flatten()
top_indices = similarities.argsort()[-n_results:][::-1]
return [(index, similarities[index]) for index in top_indices]
except Exception as e:
print(f"Error in query_recipes_embeddings: {e}")
return []
def get_page_title(url):
try:
response = requests.get(url)
if response.status_code == 200:
soup = BeautifulSoup(response.text, 'html.parser')
title = soup.find('title')
return title.get_text() if title else "No title found"
else:
return None
except requests.exceptions.RequestException:
return None
def retrieve_document_texts(doc_ids, folder_path='downloaded_articles/downloaded_articles'):
texts = []
for doc_id in doc_ids:
file_path = os.path.join(folder_path, doc_id)
try:
if not os.path.exists(file_path):
print(f"Warning: Document file not found: {file_path}")
texts.append("")
continue
with open(file_path, 'r', encoding='utf-8') as file:
soup = BeautifulSoup(file, 'html.parser')
text = soup.get_text(separator=' ', strip=True)
texts.append(text)
except Exception as e:
print(f"Error retrieving document {doc_id}: {e}")
texts.append("")
return texts
def retrieve_rec_texts(
document_indices,
folder_path='downloaded_articles/downloaded_articles',
metadata_path='recipes_metadata.xlsx'
):
try:
metadata_df = pd.read_excel(metadata_path)
if "id" not in metadata_df.columns or "original_file_name" not in metadata_df.columns:
raise ValueError("Metadata file must contain 'id' and 'original_file_name' columns.")
metadata_df = metadata_df.sort_values(by="id").reset_index(drop=True)
if metadata_df.index.max() < max(document_indices):
raise ValueError("Some document indices exceed the range of metadata.")
document_texts = []
for idx in document_indices:
if idx >= len(metadata_df):
print(f"Warning: Index {idx} is out of range for metadata.")
continue
original_file_name = metadata_df.iloc[idx]["original_file_name"]
if not original_file_name:
print(f"Warning: No file name found for index {idx}")
continue
file_path = os.path.join(folder_path, original_file_name)
if os.path.exists(file_path):
with open(file_path, "r", encoding="utf-8") as f:
document_texts.append(f.read())
else:
print(f"Warning: File not found at {file_path}")
return document_texts
except Exception as e:
print(f"Error in retrieve_rec_texts: {e}")
return []
def retrieve_metadata(document_indices: List[int], metadata_path: str = 'recipes_metadata.xlsx') -> Dict[int, Dict[str, str]]:
try:
metadata_df = pd.read_excel(metadata_path)
required_columns = {'id', 'original_file_name', 'url'}
if not required_columns.issubset(metadata_df.columns):
raise ValueError(f"Metadata file must contain columns: {required_columns}")
metadata_df['id'] = metadata_df['id'].astype(int)
filtered_metadata = metadata_df[metadata_df['id'].isin(document_indices)]
metadata_dict = {
int(row['id']): {
"original_file_name": row['original_file_name'],
"url": row['url']
}
for _, row in filtered_metadata.iterrows()
}
return metadata_dict
except Exception as e:
print(f"Error retrieving metadata: {e}")
return {}
def rerank_documents(query, document_ids, document_texts, cross_encoder_model):
try:
pairs = [(query, doc) for doc in document_texts]
scores = cross_encoder_model.predict(pairs)
scored_documents = list(zip(scores, document_ids, document_texts))
scored_documents.sort(key=lambda x: x[0], reverse=True)
print("Reranked results:")
for idx, (score, doc_id, doc) in enumerate(scored_documents):
print(f"Rank {idx + 1} (Score: {score:.4f}, Document ID: {doc_id})")
return scored_documents
except Exception as e:
print(f"Error reranking documents: {e}")
return []
def extract_entities(text, ner_pipeline=None):
try:
if ner_pipeline is None:
ner_pipeline = models['ner_pipeline']
ner_results = ner_pipeline(text)
entities = {result['word'] for result in ner_results if result['entity'].startswith("B-")}
return list(entities)
except Exception as e:
print(f"Error extracting entities: {e}")
return []
def match_entities(query_entities, sentence_entities):
try:
query_set, sentence_set = set(query_entities), set(sentence_entities)
matches = query_set.intersection(sentence_set)
return len(matches)
except Exception as e:
print(f"Error matching entities: {e}")
return 0
def extract_relevant_portions(document_texts, query, max_portions=3, portion_size=1, min_query_words=2):
relevant_portions = {}
query_entities = extract_entities(query)
print(f"Extracted Query Entities: {query_entities}")
for doc_id, doc_text in enumerate(document_texts):
sentences = nltk.sent_tokenize(doc_text)
doc_relevant_portions = []
doc_entities = extract_entities(doc_text)
print(f"Document {doc_id} Entities: {doc_entities}")
for i, sentence in enumerate(sentences):
sentence_entities = extract_entities(sentence)
relevance_score = match_entities(query_entities, sentence_entities)
if relevance_score >= min_query_words:
start_idx = max(0, i - portion_size // 2)
end_idx = min(len(sentences), i + portion_size // 2 + 1)
portion = " ".join(sentences[start_idx:end_idx])
doc_relevant_portions.append(portion)
if len(doc_relevant_portions) >= max_portions:
break
if not doc_relevant_portions and len(doc_entities) > 0:
print(f"Fallback: Selecting sentences with most entities for Document {doc_id}")
sorted_sentences = sorted(sentences, key=lambda s: len(extract_entities(s, ner_biobert)), reverse=True)
for fallback_sentence in sorted_sentences[:max_portions]:
doc_relevant_portions.append(fallback_sentence)
relevant_portions[f"Document_{doc_id}"] = doc_relevant_portions
return relevant_portions
def remove_duplicates(selected_parts):
unique_sentences = set()
unique_selected_parts = []
for sentence in selected_parts:
if sentence not in unique_sentences:
unique_selected_parts.append(sentence)
unique_sentences.add(sentence)
return unique_selected_parts
def extract_entities(text):
try:
biobert_tokenizer = models['bio_tokenizer']
biobert_model = models['bio_model']
inputs = biobert_tokenizer(text, return_tensors="pt")
outputs = biobert_model(**inputs)
predictions = torch.argmax(outputs.logits, dim=2)
tokens = biobert_tokenizer.convert_ids_to_tokens(inputs.input_ids[0])
entities = [
tokens[i]
for i in range(len(tokens))
if predictions[0][i].item() != 0 # Assuming 0 is the label for non-entity
]
return entities
except Exception as e:
print(f"Error extracting entities: {e}")
return []
def enhance_passage_with_entities(passage, entities):
return f"{passage}\n\nEntities: {', '.join(entities)}"
def create_prompt(question, passage):
prompt = ("""
As a medical expert, you are required to answer the following question based only on the provided passage. Do not include any information not present in the passage. Your response should directly reflect the content of the passage. Maintain accuracy and relevance to the provided information.
Passage: {passage}
Question: {question}
Answer:
""")
return prompt.format(passage=passage, question=question)
def generate_answer(prompt, max_length=860, temperature=0.2):
tokenizer_f = models['llm_tokenizer']
model_f = models['llm_model']
inputs = tokenizer_f(prompt, return_tensors="pt", truncation=True)
output_ids = model_f.generate(
inputs.input_ids,
max_length=max_length,
num_return_sequences=1,
temperature=temperature,
pad_token_id=tokenizer_f.eos_token_id
)
answer = tokenizer_f.decode(output_ids[0], skip_special_tokens=True)
passage_keywords = set(prompt.lower().split())
answer_keywords = set(answer.lower().split())
if passage_keywords.intersection(answer_keywords):
return answer
else:
return "Sorry, I can't help with that."
def remove_answer_prefix(text):
prefix = "Answer:"
if prefix in text:
return text.split(prefix, 1)[-1].strip()
return text
def remove_incomplete_sentence(text):
if not text.endswith('.'):
last_period_index = text.rfind('.')
if last_period_index != -1:
return text[:last_period_index + 1].strip()
return text
def translate_ar_to_en(text):
try:
ar_to_en_tokenizer = models['ar_to_en_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
ar_to_en_model= models['ar_to_en_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en")
inputs = ar_to_en_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
translated_ids = ar_to_en_model.generate(
inputs.input_ids,
max_length=512,
num_beams=4,
early_stopping=True
)
translated_text = ar_to_en_tokenizer.decode(translated_ids[0], skip_special_tokens=True)
return translated_text
except Exception as e:
print(f"Error during Arabic to English translation: {e}")
return None
def translate_en_to_ar(text):
try:
en_to_ar_tokenizer = models['en_to_ar_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
en_to_ar_model = models['en_to_ar_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar")
inputs = en_to_ar_tokenizer(text, return_tensors="pt", truncation=True, padding=True)
translated_ids = en_to_ar_model.generate(
inputs.input_ids,
max_length=512,
num_beams=4,
early_stopping=True
)
translated_text = en_to_ar_tokenizer.decode(translated_ids[0], skip_special_tokens=True)
return translated_text
except Exception as e:
print(f"Error during English to Arabic translation: {e}")
return None
def get_completion(prompt: str, model: str = "sophosympatheia/rogue-rose-103b-v0.2:free") -> str:
api_key = os.environ.get('OPENROUTER_API_KEY')
if not api_key:
raise HTTPException(status_code=500, detail="OPENROUTER_API_KEY not found in environment variables")
client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=api_key
)
if not prompt.strip():
raise HTTPException(status_code=400, detail="Please enter a question")
try:
completion = client.chat.completions.create(
extra_headers={
"HTTP-Referer": "https://huggingface.co/spaces/thechaiexperiment/phitrial",
"X-Title": "My Hugging Face Space"
},
model=model,
messages=[
{
"role": "user",
"content": prompt
}
]
)
if (completion and
hasattr(completion, 'choices') and
completion.choices and
hasattr(completion.choices[0], 'message') and
hasattr(completion.choices[0].message, 'content')):
return completion.choices[0].message.content
else:
raise HTTPException(status_code=500, detail="Received invalid response from API")
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/")
async def root():
return {"message": "Welcome to TeaRAG! Your Medical Assistant Powered by RAG"}
@app.get("/health")
async def health_check():
"""Health check endpoint"""
status = {
'status': 'healthy',
'models_loaded': bool(models),
'embeddings_loaded': bool(data.get('embeddings')),
'documents_loaded': not data.get('df', pd.DataFrame()).empty
}
return status
@app.post("/api/ask")
async def chat(query: ChatQuery):
try:
# Define constraints
constraints = "Provide a medically reliable answer in no more than 250 words."
# Handle Arabic input
if query.language_code == 0:
# Translate question from Arabic to English
english_query = translate_ar_to_en(query.query)
if not english_query:
raise HTTPException(status_code=500, detail="Failed to translate question from Arabic to English")
# Modify the prompt with constraints
english_response = get_completion(f"{english_query} {constraints}")
# Translate response back to Arabic
arabic_response = translate_en_to_ar(english_response)
if not arabic_response:
raise HTTPException(status_code=500, detail="Failed to translate response to Arabic")
return {
"original_query": query.query,
"translated_query": english_query,
"response": arabic_response,
"response_in_english": english_response
}
# Handle English input
else:
response = get_completion(f"{query.query} {constraints}")
return {
"query": query.query,
"response": response
}
except HTTPException as e:
raise e
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/chat")
async def chat_endpoint(chat_query: ChatQuery):
try:
query_text = chat_query.query
language_code = chat_query.language_code
if language_code == 0:
query_text = translate_ar_to_en(query_text)
query_embedding = embed_query_text(query_text)
n_results = 5
embeddings_data = load_embeddings ()
folder_path = 'downloaded_articles/downloaded_articles'
initial_results = query_embeddings(query_embedding, embeddings_data, n_results)
document_ids = [doc_id for doc_id, _ in initial_results]
document_texts = retrieve_document_texts(document_ids, folder_path)
cross_encoder = models['cross_encoder']
scores = cross_encoder.predict([(query_text, doc) for doc in document_texts])
scored_documents = list(zip(scores, document_ids, document_texts))
scored_documents.sort(key=lambda x: x[0], reverse=True)
relevant_portions = extract_relevant_portions(document_texts, query_text, max_portions=3, portion_size=1, min_query_words=2)
flattened_relevant_portions = []
for doc_id, portions in relevant_portions.items():
flattened_relevant_portions.extend(portions)
unique_selected_parts = remove_duplicates(flattened_relevant_portions)
combined_parts = " ".join(unique_selected_parts)
context = [query_text] + unique_selected_parts
entities = extract_entities(query_text)
passage = enhance_passage_with_entities(combined_parts, entities)
prompt = create_prompt(query_text, passage)
answer = generate_answer(prompt)
answer_part = answer.split("Answer:")[-1].strip()
cleaned_answer = remove_answer_prefix(answer_part)
final_answer = remove_incomplete_sentence(cleaned_answer)
if language_code == 0:
final_answer = translate_en_to_ar(final_answer)
if final_answer:
print("Answer:")
print(final_answer)
else:
print("Sorry, I can't help with that.")
return {
"response": f"I hope this answers your question: {final_answer}",
# "conversation_id": chat_query.conversation_id,
"success": True
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/api/resources")
async def resources_endpoint(profile: MedicalProfile):
try:
query_text = profile.conditions + " " + profile.daily_symptoms
n_results = profile.count
print(f"Generated query text: {query_text}")
query_embedding = embed_query_text(query_text)
if query_embedding is None:
raise ValueError("Failed to generate query embedding.")
embeddings_data = load_embeddings()
folder_path = 'downloaded_articles/downloaded_articles'
initial_results = query_embeddings(query_embedding, embeddings_data, n_results)
if not initial_results:
raise ValueError("No relevant documents found.")
document_ids = [doc_id for doc_id, _ in initial_results]
file_path = 'finalcleaned_excel_file.xlsx'
df = pd.read_excel(file_path)
file_name_to_url = {f"article_{index}.html": url for index, url in enumerate(df['Unnamed: 0'])}
resources = []
for file_name in document_ids:
original_url = file_name_to_url.get(file_name, None)
if original_url:
title = get_page_title(original_url) or "Unknown Title"
resources.append({"file_name": file_name, "title": title, "url": original_url})
else:
resources.append({"file_name": file_name, "title": "Unknown", "url": None})
document_texts = retrieve_document_texts(document_ids, folder_path)
if not document_texts:
raise ValueError("Failed to retrieve document texts.")
cross_encoder = models['cross_encoder']
scores = cross_encoder.predict([(query_text, doc) for doc in document_texts])
scores = [float(score) for score in scores]
for i, resource in enumerate(resources):
resource["score"] = scores[i] if i < len(scores) else 0.0
resources.sort(key=lambda x: x["score"], reverse=True)
output = [{"title": resource["title"], "url": resource["url"]} for resource in resources]
return output
except ValueError as ve:
raise HTTPException(status_code=400, detail=str(ve))
except Exception as e:
print(f"Unexpected error: {e}")
raise HTTPException(status_code=500, detail="An unexpected error occurred.")
@app.post("/api/recipes")
async def recipes_endpoint(profile: MedicalProfile):
try:
recipe_query = (
f"Recipes and foods for: "
f"{profile.conditions} and experiencing {profile.daily_symptoms}"
)
query_text = recipe_query
print(f"Generated query text: {query_text}")
n_results = profile.count
query_embedding = embed_query_text(query_text)
if query_embedding is None:
raise ValueError("Failed to generate query embedding.")
embeddings_data = load_recipes_embeddings()
folder_path = 'downloaded_articles/downloaded_articles'
initial_results = query_recipes_embeddings(query_embedding, embeddings_data, n_results)
if not initial_results:
raise ValueError("No relevant recipes found.")
print("Initial results (document indices and similarities):")
print(initial_results)
document_indices = [doc_id for doc_id, _ in initial_results]
print("Document indices:", document_indices)
metadata_path = 'recipes_metadata.xlsx'
metadata = retrieve_metadata(document_indices, metadata_path=metadata_path)
print(f"Retrieved Metadata: {metadata}")
recipes = []
for item in metadata.values():
recipes.append({
"title": item["original_file_name"] if "original_file_name" in item else "Unknown Title",
"url": item["url"] if "url" in item else ""
})
print(recipes)
return recipes
except ValueError as ve:
raise HTTPException(status_code=400, detail=str(ve))
except Exception as e:
print(f"Unexpected error: {e}")
raise HTTPException(status_code=500, detail="An unexpected error occurred.")
if not init_success:
print("Warning: Application initialized with partial functionality")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)