Spaces:
Runtime error
Runtime error
import transformers | |
import pickle | |
import os | |
import re | |
import numpy as np | |
import torchvision | |
import nltk | |
import torch | |
import pandas as pd | |
import requests | |
import zipfile | |
import tempfile | |
from openai import OpenAI | |
from PyPDF2 import PdfReader | |
from fastapi import FastAPI, HTTPException | |
from fastapi.middleware.cors import CORSMiddleware | |
from pydantic import BaseModel | |
from transformers import ( | |
AutoTokenizer, | |
AutoModelForSeq2SeqLM, | |
AutoModelForTokenClassification, | |
AutoModelForCausalLM, | |
pipeline, | |
Qwen2Tokenizer, | |
BartForConditionalGeneration | |
) | |
from sentence_transformers import SentenceTransformer, CrossEncoder, util | |
from sklearn.metrics.pairwise import cosine_similarity | |
from bs4 import BeautifulSoup | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
from typing import List, Dict, Optional | |
from safetensors.numpy import load_file | |
from safetensors.torch import safe_open | |
nltk.download('punkt_tab') | |
app = FastAPI() | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=["*"], | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
models = {} | |
data = {} | |
class QueryRequest(BaseModel): | |
query: str | |
language_code: int = 1 | |
class MedicalProfile(BaseModel): | |
conditions: str | |
daily_symptoms: str | |
count: int | |
class ChatQuery(BaseModel): | |
query: str | |
language_code: int = 1 | |
#conversation_id: str | |
class ChatMessage(BaseModel): | |
role: str | |
content: str | |
timestamp: str | |
def init_nltk(): | |
try: | |
nltk.download('punkt', quiet=True) | |
return True | |
except Exception as e: | |
print(f"Error initializing NLTK: {e}") | |
return False | |
def load_models(): | |
try: | |
print("Loading models...") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
print(f"Device set to use {device}") | |
models['embedding_model'] = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') | |
models['cross_encoder'] = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2', max_length=512) | |
models['semantic_model'] = SentenceTransformer('all-MiniLM-L6-v2') | |
models['ar_to_en_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en") | |
models['ar_to_en_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en") | |
models['en_to_ar_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar") | |
models['en_to_ar_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar") | |
models['att_tokenizer'] = AutoTokenizer.from_pretrained("facebook/bart-base") | |
models['att_model'] = BartForConditionalGeneration.from_pretrained("facebook/bart-base") | |
models['bio_tokenizer'] = AutoTokenizer.from_pretrained("blaze999/Medical-NER") | |
models['bio_model'] = AutoModelForTokenClassification.from_pretrained("blaze999/Medical-NER") | |
models['ner_pipeline'] = pipeline("ner", model=models['bio_model'], tokenizer=models['bio_tokenizer']) | |
model_name = "M4-ai/Orca-2.0-Tau-1.8B" | |
models['llm_tokenizer'] = AutoTokenizer.from_pretrained(model_name) | |
models['llm_model'] = AutoModelForCausalLM.from_pretrained(model_name) | |
models['gen_tokenizer'] = AutoTokenizer.from_pretrained("HuggingFaceTB/SmolLM-1.7B-Instruct") | |
models['gen_model'] = AutoModelForCausalLM.from_pretrained("HuggingFaceTB/SmolLM-1.7B-Instruct") | |
print("Models loaded successfully") | |
return True | |
except Exception as e: | |
print(f"Error loading models: {e}") | |
return False | |
def load_embeddings() -> Optional[Dict[str, np.ndarray]]: | |
try: | |
embeddings_path = 'embeddings.safetensors' | |
if not os.path.exists(embeddings_path): | |
print("File not found locally. Attempting to download from Hugging Face Hub...") | |
embeddings_path = hf_hub_download( | |
repo_id=os.environ.get('HF_SPACE_ID', 'thechaiexperiment/TeaRAG'), | |
filename="embeddings.safetensors", | |
repo_type="space" | |
) | |
embeddings = {} | |
with safe_open(embeddings_path, framework="pt") as f: | |
keys = f.keys() | |
for key in keys: | |
try: | |
tensor = f.get_tensor(key) | |
if not isinstance(tensor, torch.Tensor): | |
raise TypeError(f"Value for key {key} is not a valid PyTorch tensor.") | |
embeddings[key] = tensor.numpy() | |
except Exception as key_error: | |
print(f"Failed to process key {key}: {key_error}") | |
if embeddings: | |
print("Embeddings successfully loaded.") | |
else: | |
print("No embeddings could be loaded. Please check the file format and content.") | |
return embeddings | |
except Exception as e: | |
print(f"Error loading embeddings: {e}") | |
return None | |
def normalize_key(key: str) -> str: | |
match = re.search(r'file_(\d+)', key) | |
if match: | |
return match.group(1) | |
return key | |
def load_recipes_embeddings() -> Optional[np.ndarray]: | |
try: | |
embeddings_path = 'recipes_embeddings.safetensors' | |
if not os.path.exists(embeddings_path): | |
print("File not found locally. Attempting to download from Hugging Face Hub...") | |
embeddings_path = hf_hub_download( | |
repo_id=os.environ.get('HF_SPACE_ID', 'thechaiexperiment/TeaRAG'), | |
filename="embeddings.safetensors", | |
repo_type="space" | |
) | |
embeddings = load_file(embeddings_path) | |
if "embeddings" not in embeddings: | |
raise ValueError("Key 'embeddings' not found in the safetensors file.") | |
tensor = embeddings["embeddings"] | |
print(f"Successfully loaded embeddings.") | |
print(f"Shape of embeddings: {tensor.shape}") | |
print(f"Dtype of embeddings: {tensor.dtype}") | |
print(f"First few values of the first embedding: {tensor[0][:5]}") | |
return tensor | |
except Exception as e: | |
print(f"Error loading embeddings: {e}") | |
return None | |
def load_documents_data(folder_path='downloaded_articles/downloaded_articles'): | |
try: | |
print("Loading documents data...") | |
if not os.path.exists(folder_path) or not os.path.isdir(folder_path): | |
print(f"Error: Folder '{folder_path}' not found") | |
return False | |
html_files = [f for f in os.listdir(folder_path) if f.endswith('.html')] | |
if not html_files: | |
print(f"No HTML files found in folder '{folder_path}'") | |
return False | |
documents = [] | |
for file_name in html_files: | |
file_path = os.path.join(folder_path, file_name) | |
try: | |
with open(file_path, 'r', encoding='utf-8') as file: | |
soup = BeautifulSoup(file, 'html.parser') | |
text = soup.get_text(separator='\n').strip() | |
documents.append({"file_name": file_name, "content": text}) | |
except Exception as e: | |
print(f"Error reading file {file_name}: {e}") | |
data['df'] = pd.DataFrame(documents) | |
if data['df'].empty: | |
print("No valid documents loaded.") | |
return False | |
print(f"Successfully loaded {len(data['df'])} document records.") | |
return True | |
except Exception as e: | |
print(f"Error loading docs: {e}") | |
return None | |
def load_data(): | |
embeddings_success = load_embeddings() | |
documents_success = load_documents_data() | |
if not embeddings_success: | |
print("Warning: Failed to load embeddings, falling back to basic functionality") | |
if not documents_success: | |
print("Warning: Failed to load documents data, falling back to basic functionality") | |
return True | |
print("Initializing application...") | |
init_success = load_models() and load_data() | |
def translate_text(text, source_to_target='ar_to_en'): | |
try: | |
if source_to_target == 'ar_to_en': | |
tokenizer = models['ar_to_en_tokenizer'] | |
model = models['ar_to_en_model'] | |
else: | |
tokenizer = models['en_to_ar_tokenizer'] | |
model = models['en_to_ar_model'] | |
inputs = tokenizer(text, return_tensors="pt", truncation=True) | |
outputs = model.generate(**inputs) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
except Exception as e: | |
print(f"Translation error: {e}") | |
return text | |
def embed_query_text(query_text): | |
embedding = models['embedding_model'] | |
query_embedding = embedding.encode([query_text]) | |
return query_embedding | |
def query_embeddings(query_embedding, embeddings_data, n_results): | |
embeddings_data = load_embeddings() | |
if not embeddings_data: | |
print("No embeddings data available.") | |
return [] | |
try: | |
doc_ids = list(embeddings_data.keys()) | |
doc_embeddings = np.array(list(embeddings_data.values())) | |
similarities = cosine_similarity(query_embedding, doc_embeddings).flatten() | |
top_indices = similarities.argsort()[-n_results:][::-1] | |
return [(doc_ids[i], similarities[i]) for i in top_indices] | |
except Exception as e: | |
print(f"Error in query_embeddings: {e}") | |
return [] | |
def query_recipes_embeddings(query_embedding, embeddings_data, n_results): | |
embeddings_data = load_recipes_embeddings() | |
if embeddings_data is None: | |
print("No embeddings data available.") | |
return [] | |
try: | |
if query_embedding.ndim == 1: | |
query_embedding = query_embedding.reshape(1, -1) | |
similarities = cosine_similarity(query_embedding, embeddings_data).flatten() | |
top_indices = similarities.argsort()[-n_results:][::-1] | |
return [(index, similarities[index]) for index in top_indices] | |
except Exception as e: | |
print(f"Error in query_recipes_embeddings: {e}") | |
return [] | |
def get_page_title(url): | |
try: | |
response = requests.get(url) | |
if response.status_code == 200: | |
soup = BeautifulSoup(response.text, 'html.parser') | |
title = soup.find('title') | |
return title.get_text() if title else "No title found" | |
else: | |
return None | |
except requests.exceptions.RequestException: | |
return None | |
def retrieve_document_texts(doc_ids, folder_path='downloaded_articles/downloaded_articles'): | |
texts = [] | |
for doc_id in doc_ids: | |
file_path = os.path.join(folder_path, doc_id) | |
try: | |
if not os.path.exists(file_path): | |
print(f"Warning: Document file not found: {file_path}") | |
texts.append("") | |
continue | |
with open(file_path, 'r', encoding='utf-8') as file: | |
soup = BeautifulSoup(file, 'html.parser') | |
text = soup.get_text(separator=' ', strip=True) | |
texts.append(text) | |
except Exception as e: | |
print(f"Error retrieving document {doc_id}: {e}") | |
texts.append("") | |
return texts | |
def retrieve_rec_texts( | |
document_indices, | |
folder_path='downloaded_articles/downloaded_articles', | |
metadata_path='recipes_metadata.xlsx' | |
): | |
try: | |
metadata_df = pd.read_excel(metadata_path) | |
if "id" not in metadata_df.columns or "original_file_name" not in metadata_df.columns: | |
raise ValueError("Metadata file must contain 'id' and 'original_file_name' columns.") | |
metadata_df = metadata_df.sort_values(by="id").reset_index(drop=True) | |
if metadata_df.index.max() < max(document_indices): | |
raise ValueError("Some document indices exceed the range of metadata.") | |
document_texts = [] | |
for idx in document_indices: | |
if idx >= len(metadata_df): | |
print(f"Warning: Index {idx} is out of range for metadata.") | |
continue | |
original_file_name = metadata_df.iloc[idx]["original_file_name"] | |
if not original_file_name: | |
print(f"Warning: No file name found for index {idx}") | |
continue | |
file_path = os.path.join(folder_path, original_file_name) | |
if os.path.exists(file_path): | |
with open(file_path, "r", encoding="utf-8") as f: | |
document_texts.append(f.read()) | |
else: | |
print(f"Warning: File not found at {file_path}") | |
return document_texts | |
except Exception as e: | |
print(f"Error in retrieve_rec_texts: {e}") | |
return [] | |
def retrieve_metadata(document_indices: List[int], metadata_path: str = 'recipes_metadata.xlsx') -> Dict[int, Dict[str, str]]: | |
try: | |
metadata_df = pd.read_excel(metadata_path) | |
required_columns = {'id', 'original_file_name', 'url'} | |
if not required_columns.issubset(metadata_df.columns): | |
raise ValueError(f"Metadata file must contain columns: {required_columns}") | |
metadata_df['id'] = metadata_df['id'].astype(int) | |
filtered_metadata = metadata_df[metadata_df['id'].isin(document_indices)] | |
metadata_dict = { | |
int(row['id']): { | |
"original_file_name": row['original_file_name'], | |
"url": row['url'] | |
} | |
for _, row in filtered_metadata.iterrows() | |
} | |
return metadata_dict | |
except Exception as e: | |
print(f"Error retrieving metadata: {e}") | |
return {} | |
def rerank_documents(query, document_ids, document_texts, cross_encoder_model): | |
try: | |
pairs = [(query, doc) for doc in document_texts] | |
scores = cross_encoder_model.predict(pairs) | |
scored_documents = list(zip(scores, document_ids, document_texts)) | |
scored_documents.sort(key=lambda x: x[0], reverse=True) | |
print("Reranked results:") | |
for idx, (score, doc_id, doc) in enumerate(scored_documents): | |
print(f"Rank {idx + 1} (Score: {score:.4f}, Document ID: {doc_id})") | |
return scored_documents | |
except Exception as e: | |
print(f"Error reranking documents: {e}") | |
return [] | |
def extract_entities(text, ner_pipeline=None): | |
try: | |
if ner_pipeline is None: | |
ner_pipeline = models['ner_pipeline'] | |
ner_results = ner_pipeline(text) | |
entities = {result['word'] for result in ner_results if result['entity'].startswith("B-")} | |
return list(entities) | |
except Exception as e: | |
print(f"Error extracting entities: {e}") | |
return [] | |
def match_entities(query_entities, sentence_entities): | |
try: | |
query_set, sentence_set = set(query_entities), set(sentence_entities) | |
matches = query_set.intersection(sentence_set) | |
return len(matches) | |
except Exception as e: | |
print(f"Error matching entities: {e}") | |
return 0 | |
def extract_relevant_portions(document_texts, query, max_portions=3, portion_size=1, min_query_words=2): | |
relevant_portions = {} | |
query_entities = extract_entities(query) | |
print(f"Extracted Query Entities: {query_entities}") | |
for doc_id, doc_text in enumerate(document_texts): | |
sentences = nltk.sent_tokenize(doc_text) | |
doc_relevant_portions = [] | |
doc_entities = extract_entities(doc_text) | |
print(f"Document {doc_id} Entities: {doc_entities}") | |
for i, sentence in enumerate(sentences): | |
sentence_entities = extract_entities(sentence) | |
relevance_score = match_entities(query_entities, sentence_entities) | |
if relevance_score >= min_query_words: | |
start_idx = max(0, i - portion_size // 2) | |
end_idx = min(len(sentences), i + portion_size // 2 + 1) | |
portion = " ".join(sentences[start_idx:end_idx]) | |
doc_relevant_portions.append(portion) | |
if len(doc_relevant_portions) >= max_portions: | |
break | |
if not doc_relevant_portions and len(doc_entities) > 0: | |
print(f"Fallback: Selecting sentences with most entities for Document {doc_id}") | |
sorted_sentences = sorted(sentences, key=lambda s: len(extract_entities(s, ner_biobert)), reverse=True) | |
for fallback_sentence in sorted_sentences[:max_portions]: | |
doc_relevant_portions.append(fallback_sentence) | |
relevant_portions[f"Document_{doc_id}"] = doc_relevant_portions | |
return relevant_portions | |
def remove_duplicates(selected_parts): | |
unique_sentences = set() | |
unique_selected_parts = [] | |
for sentence in selected_parts: | |
if sentence not in unique_sentences: | |
unique_selected_parts.append(sentence) | |
unique_sentences.add(sentence) | |
return unique_selected_parts | |
def extract_entities(text): | |
try: | |
biobert_tokenizer = models['bio_tokenizer'] | |
biobert_model = models['bio_model'] | |
inputs = biobert_tokenizer(text, return_tensors="pt") | |
outputs = biobert_model(**inputs) | |
predictions = torch.argmax(outputs.logits, dim=2) | |
tokens = biobert_tokenizer.convert_ids_to_tokens(inputs.input_ids[0]) | |
entities = [ | |
tokens[i] | |
for i in range(len(tokens)) | |
if predictions[0][i].item() != 0 # Assuming 0 is the label for non-entity | |
] | |
return entities | |
except Exception as e: | |
print(f"Error extracting entities: {e}") | |
return [] | |
def enhance_passage_with_entities(passage, entities): | |
return f"{passage}\n\nEntities: {', '.join(entities)}" | |
def create_prompt(question, passage): | |
prompt = (""" | |
As a medical expert, you are required to answer the following question based only on the provided passage. Do not include any information not present in the passage. Your response should directly reflect the content of the passage. Maintain accuracy and relevance to the provided information. | |
Passage: {passage} | |
Question: {question} | |
Answer: | |
""") | |
return prompt.format(passage=passage, question=question) | |
def generate_answer(prompt, max_length=860, temperature=0.2): | |
tokenizer_f = models['llm_tokenizer'] | |
model_f = models['llm_model'] | |
inputs = tokenizer_f(prompt, return_tensors="pt", truncation=True) | |
output_ids = model_f.generate( | |
inputs.input_ids, | |
max_length=max_length, | |
num_return_sequences=1, | |
temperature=temperature, | |
pad_token_id=tokenizer_f.eos_token_id | |
) | |
answer = tokenizer_f.decode(output_ids[0], skip_special_tokens=True) | |
passage_keywords = set(prompt.lower().split()) | |
answer_keywords = set(answer.lower().split()) | |
if passage_keywords.intersection(answer_keywords): | |
return answer | |
else: | |
return "Sorry, I can't help with that." | |
def remove_answer_prefix(text): | |
prefix = "Answer:" | |
if prefix in text: | |
return text.split(prefix, 1)[-1].strip() | |
return text | |
def remove_incomplete_sentence(text): | |
if not text.endswith('.'): | |
last_period_index = text.rfind('.') | |
if last_period_index != -1: | |
return text[:last_period_index + 1].strip() | |
return text | |
def translate_ar_to_en(text): | |
try: | |
ar_to_en_tokenizer = models['ar_to_en_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ar-en") | |
ar_to_en_model= models['ar_to_en_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ar-en") | |
inputs = ar_to_en_tokenizer(text, return_tensors="pt", truncation=True, padding=True) | |
translated_ids = ar_to_en_model.generate( | |
inputs.input_ids, | |
max_length=512, | |
num_beams=4, | |
early_stopping=True | |
) | |
translated_text = ar_to_en_tokenizer.decode(translated_ids[0], skip_special_tokens=True) | |
return translated_text | |
except Exception as e: | |
print(f"Error during Arabic to English translation: {e}") | |
return None | |
def translate_en_to_ar(text): | |
try: | |
en_to_ar_tokenizer = models['en_to_ar_tokenizer'] = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ar") | |
en_to_ar_model = models['en_to_ar_model'] = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ar") | |
inputs = en_to_ar_tokenizer(text, return_tensors="pt", truncation=True, padding=True) | |
translated_ids = en_to_ar_model.generate( | |
inputs.input_ids, | |
max_length=512, | |
num_beams=4, | |
early_stopping=True | |
) | |
translated_text = en_to_ar_tokenizer.decode(translated_ids[0], skip_special_tokens=True) | |
return translated_text | |
except Exception as e: | |
print(f"Error during English to Arabic translation: {e}") | |
return None | |
def get_completion(prompt: str, model: str = "sophosympatheia/rogue-rose-103b-v0.2:free") -> str: | |
api_key = os.environ.get('OPENROUTER_API_KEY') | |
if not api_key: | |
raise HTTPException(status_code=500, detail="OPENROUTER_API_KEY not found in environment variables") | |
client = OpenAI( | |
base_url="https://openrouter.ai/api/v1", | |
api_key=api_key | |
) | |
if not prompt.strip(): | |
raise HTTPException(status_code=400, detail="Please enter a question") | |
try: | |
completion = client.chat.completions.create( | |
extra_headers={ | |
"HTTP-Referer": "https://huggingface.co/spaces/thechaiexperiment/phitrial", | |
"X-Title": "My Hugging Face Space" | |
}, | |
model=model, | |
messages=[ | |
{ | |
"role": "user", | |
"content": prompt | |
} | |
] | |
) | |
if (completion and | |
hasattr(completion, 'choices') and | |
completion.choices and | |
hasattr(completion.choices[0], 'message') and | |
hasattr(completion.choices[0].message, 'content')): | |
return completion.choices[0].message.content | |
else: | |
raise HTTPException(status_code=500, detail="Received invalid response from API") | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
async def root(): | |
return {"message": "Welcome to TeaRAG! Your Medical Assistant Powered by RAG"} | |
async def health_check(): | |
"""Health check endpoint""" | |
status = { | |
'status': 'healthy', | |
'models_loaded': bool(models), | |
'embeddings_loaded': bool(data.get('embeddings')), | |
'documents_loaded': not data.get('df', pd.DataFrame()).empty | |
} | |
return status | |
async def chat(query: ChatQuery): | |
try: | |
# Define constraints | |
constraints = "Provide a medically reliable answer in no more than 250 words." | |
# Handle Arabic input | |
if query.language_code == 0: | |
# Translate question from Arabic to English | |
english_query = translate_ar_to_en(query.query) | |
if not english_query: | |
raise HTTPException(status_code=500, detail="Failed to translate question from Arabic to English") | |
# Modify the prompt with constraints | |
english_response = get_completion(f"{english_query} {constraints}") | |
# Translate response back to Arabic | |
arabic_response = translate_en_to_ar(english_response) | |
if not arabic_response: | |
raise HTTPException(status_code=500, detail="Failed to translate response to Arabic") | |
return { | |
"original_query": query.query, | |
"translated_query": english_query, | |
"response": arabic_response, | |
"response_in_english": english_response | |
} | |
# Handle English input | |
else: | |
response = get_completion(f"{query.query} {constraints}") | |
return { | |
"query": query.query, | |
"response": response | |
} | |
except HTTPException as e: | |
raise e | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
async def chat_endpoint(chat_query: ChatQuery): | |
try: | |
query_text = chat_query.query | |
language_code = chat_query.language_code | |
if language_code == 0: | |
query_text = translate_ar_to_en(query_text) | |
query_embedding = embed_query_text(query_text) | |
n_results = 5 | |
embeddings_data = load_embeddings () | |
folder_path = 'downloaded_articles/downloaded_articles' | |
initial_results = query_embeddings(query_embedding, embeddings_data, n_results) | |
document_ids = [doc_id for doc_id, _ in initial_results] | |
document_texts = retrieve_document_texts(document_ids, folder_path) | |
cross_encoder = models['cross_encoder'] | |
scores = cross_encoder.predict([(query_text, doc) for doc in document_texts]) | |
scored_documents = list(zip(scores, document_ids, document_texts)) | |
scored_documents.sort(key=lambda x: x[0], reverse=True) | |
relevant_portions = extract_relevant_portions(document_texts, query_text, max_portions=3, portion_size=1, min_query_words=2) | |
flattened_relevant_portions = [] | |
for doc_id, portions in relevant_portions.items(): | |
flattened_relevant_portions.extend(portions) | |
unique_selected_parts = remove_duplicates(flattened_relevant_portions) | |
combined_parts = " ".join(unique_selected_parts) | |
context = [query_text] + unique_selected_parts | |
entities = extract_entities(query_text) | |
passage = enhance_passage_with_entities(combined_parts, entities) | |
prompt = create_prompt(query_text, passage) | |
answer = generate_answer(prompt) | |
answer_part = answer.split("Answer:")[-1].strip() | |
cleaned_answer = remove_answer_prefix(answer_part) | |
final_answer = remove_incomplete_sentence(cleaned_answer) | |
if language_code == 0: | |
final_answer = translate_en_to_ar(final_answer) | |
if final_answer: | |
print("Answer:") | |
print(final_answer) | |
else: | |
print("Sorry, I can't help with that.") | |
return { | |
"response": f"I hope this answers your question: {final_answer}", | |
# "conversation_id": chat_query.conversation_id, | |
"success": True | |
} | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
async def resources_endpoint(profile: MedicalProfile): | |
try: | |
query_text = profile.conditions + " " + profile.daily_symptoms | |
n_results = profile.count | |
print(f"Generated query text: {query_text}") | |
query_embedding = embed_query_text(query_text) | |
if query_embedding is None: | |
raise ValueError("Failed to generate query embedding.") | |
embeddings_data = load_embeddings() | |
folder_path = 'downloaded_articles/downloaded_articles' | |
initial_results = query_embeddings(query_embedding, embeddings_data, n_results) | |
if not initial_results: | |
raise ValueError("No relevant documents found.") | |
document_ids = [doc_id for doc_id, _ in initial_results] | |
file_path = 'finalcleaned_excel_file.xlsx' | |
df = pd.read_excel(file_path) | |
file_name_to_url = {f"article_{index}.html": url for index, url in enumerate(df['Unnamed: 0'])} | |
resources = [] | |
for file_name in document_ids: | |
original_url = file_name_to_url.get(file_name, None) | |
if original_url: | |
title = get_page_title(original_url) or "Unknown Title" | |
resources.append({"file_name": file_name, "title": title, "url": original_url}) | |
else: | |
resources.append({"file_name": file_name, "title": "Unknown", "url": None}) | |
document_texts = retrieve_document_texts(document_ids, folder_path) | |
if not document_texts: | |
raise ValueError("Failed to retrieve document texts.") | |
cross_encoder = models['cross_encoder'] | |
scores = cross_encoder.predict([(query_text, doc) for doc in document_texts]) | |
scores = [float(score) for score in scores] | |
for i, resource in enumerate(resources): | |
resource["score"] = scores[i] if i < len(scores) else 0.0 | |
resources.sort(key=lambda x: x["score"], reverse=True) | |
output = [{"title": resource["title"], "url": resource["url"]} for resource in resources] | |
return output | |
except ValueError as ve: | |
raise HTTPException(status_code=400, detail=str(ve)) | |
except Exception as e: | |
print(f"Unexpected error: {e}") | |
raise HTTPException(status_code=500, detail="An unexpected error occurred.") | |
async def recipes_endpoint(profile: MedicalProfile): | |
try: | |
recipe_query = ( | |
f"Recipes and foods for: " | |
f"{profile.conditions} and experiencing {profile.daily_symptoms}" | |
) | |
query_text = recipe_query | |
print(f"Generated query text: {query_text}") | |
n_results = profile.count | |
query_embedding = embed_query_text(query_text) | |
if query_embedding is None: | |
raise ValueError("Failed to generate query embedding.") | |
embeddings_data = load_recipes_embeddings() | |
folder_path = 'downloaded_articles/downloaded_articles' | |
initial_results = query_recipes_embeddings(query_embedding, embeddings_data, n_results) | |
if not initial_results: | |
raise ValueError("No relevant recipes found.") | |
print("Initial results (document indices and similarities):") | |
print(initial_results) | |
document_indices = [doc_id for doc_id, _ in initial_results] | |
print("Document indices:", document_indices) | |
metadata_path = 'recipes_metadata.xlsx' | |
metadata = retrieve_metadata(document_indices, metadata_path=metadata_path) | |
print(f"Retrieved Metadata: {metadata}") | |
recipes = [] | |
for item in metadata.values(): | |
recipes.append({ | |
"title": item["original_file_name"] if "original_file_name" in item else "Unknown Title", | |
"url": item["url"] if "url" in item else "" | |
}) | |
print(recipes) | |
return recipes | |
except ValueError as ve: | |
raise HTTPException(status_code=400, detail=str(ve)) | |
except Exception as e: | |
print(f"Unexpected error: {e}") | |
raise HTTPException(status_code=500, detail="An unexpected error occurred.") | |
if not init_success: | |
print("Warning: Application initialized with partial functionality") | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=7860) |