Spaces:
Runtime error
Runtime error
import os | |
os.system("pip install git+https://github.com/openai/whisper.git") | |
import pysrt | |
import pandas as pd | |
from pytube import YouTube | |
from datetime import timedelta | |
import whisper | |
from subprocess import call | |
import gradio as gr | |
import logging | |
# from transformers.pipelines.audio_utils import ffmpeg_read | |
logger = logging.getLogger("whisper-jax-app") | |
logger.setLevel(logging.INFO) | |
ch = logging.StreamHandler() | |
ch.setLevel(logging.INFO) | |
formatter = logging.Formatter( | |
"%(asctime)s;%(levelname)s;%(message)s", "%Y-%m-%d %H:%M:%S") | |
ch.setFormatter(formatter) | |
logger.addHandler(ch) | |
FILE_LIMIT_MB = 1000 | |
def run_cmd(command): | |
try: | |
print(command) | |
call(command) | |
except KeyboardInterrupt: | |
print("Process interrupted") | |
sys.exit(1) | |
def inference(text): | |
cmd = ['tts', '--text', text] | |
run_cmd(cmd) | |
return 'tts_output.wav' | |
baseModel = whisper.load_model("base") | |
df_init = pd.DataFrame(columns=['start', 'end', 'text']) | |
transcription_df = gr.DataFrame(value=df_init, label="Transcription dataframe", row_count=( | |
0, "dynamic"), max_rows=30, wrap=True, overflow_row_behaviour='paginate') | |
inputs = [gr.components.Audio(type="filepath", label="Add audio file"), gr.inputs.Audio(source="microphone", | |
optional=True, type="filepath"),] | |
outputs = [gr.components.Textbox(), transcription_df] | |
title = "Transcribe multi-lingual audio clips" | |
description = "An example of using OpenAi whisper to generate transcriptions for audio clips." | |
article = "" | |
audio_examples = [ | |
["input/example-1.wav"], | |
["input/example-2.wav"], | |
] | |
def transcribe(inputs, microphone): | |
if (microphone is not None): | |
inputs = microphone | |
if inputs is None: | |
logger.warning("No audio file") | |
return [f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB.", df_init] | |
file_size_mb = os.stat(inputs).st_size / (1024 * 1024) | |
# --------------------------------------------------- Check the file size --------------------------------------------------- | |
if file_size_mb > FILE_LIMIT_MB: | |
logger.warning("Max file size exceeded") | |
df = pd.DataFrame(columns=['start', 'end', 'text']) | |
return [f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB.", df_init] | |
# --------------------------------------------------- Transcribe the audio --------------------------------------------------- | |
result = baseModel.transcribe(audio=inputs, language='english', | |
verbose=False) | |
srtFilename = os.path.join("output/SrtFiles", inputs.split( | |
'/')[-1].split('.')[0]+'.srt') | |
# --------------------------------------------------- Clear the file if exists --------------------------------------------------- | |
if os.path.exists(srtFilename): | |
os.remove(srtFilename) | |
with open(srtFilename, 'w', encoding='utf-8') as srtFile: | |
srtFile.write('') | |
# --------------------------------------------------- Write the file --------------------------------------------------- | |
segments = result['segments'] | |
for segment in segments: | |
startTime = str(0)+str(timedelta(seconds=int(segment['start'])))+',000' | |
endTime = str(0)+str(timedelta(seconds=int(segment['end'])))+',000' | |
text = segment['text'] | |
segmentId = segment['id']+1 | |
segment = f"{segmentId}\n{startTime} --> {endTime}\n{text[1:] if text[0] is ' ' else text}\n\n" | |
with open(srtFilename, 'a', encoding='utf-8') as srtFile: | |
srtFile.write(segment) | |
# ------------------------------------------- Read the file and Prepare to display --------------------------------------- | |
try: | |
srt_path = srtFilename | |
df = pd.DataFrame(columns=['start', 'end', 'text']) | |
subs = pysrt.open(srt_path) | |
objects = [] | |
for sub in subs: | |
start_hours = str(str(sub.start.hours) + "00")[0:2] if len( | |
str(sub.start.hours)) == 2 else str("0" + str(sub.start.hours) + "00")[0:2] | |
end_hours = str(str(sub.end.hours) + "00")[0:2] if len( | |
str(sub.end.hours)) == 2 else str("0" + str(sub.end.hours) + "00")[0:2] | |
start_minutes = str(str(sub.start.minutes) + "00")[0:2] if len( | |
str(sub.start.minutes)) == 2 else str("0" + str(sub.start.minutes) + "00")[0:2] | |
end_minutes = str(str(sub.end.minutes) + "00")[0:2] if len( | |
str(sub.end.minutes)) == 2 else str("0" + str(sub.end.minutes) + "00")[0:2] | |
start_seconds = str(str(sub.start.seconds) + "00")[0:2] if len( | |
str(sub.start.seconds)) == 2 else str("0" + str(sub.start.seconds) + "00")[0:2] | |
end_seconds = str(str(sub.end.seconds) + "00")[0:2] if len( | |
str(sub.end.seconds)) == 2 else str("0" + str(sub.end.seconds) + "00")[0:2] | |
start = start_hours + ":" + start_minutes + ":" + start_seconds + ",000" | |
end = end_hours + ":" + end_minutes + ":" + end_seconds + ",000" | |
text = sub.text | |
objects.append([start, end, text]) | |
df = pd.DataFrame(objects, columns=['start', 'end', 'text']) | |
except Exception as e: | |
print('Error: ', e) | |
df = df_init | |
return [result["text"], df] | |
# Transcribe youtube video | |
# define function for transcription | |
def youtube_transcript(url): | |
try: | |
if url: | |
yt = YouTube(url, use_oauth=True) | |
source = yt.streams.filter(progressive=True, file_extension='mp4').order_by( | |
'resolution').desc().first().download('output/youtube') | |
transcript = baseModel.transcribe(source) | |
return transcript["text"] | |
except Exception as e: | |
print('Error: ', e) | |
return 'Error: ' + str(e) | |
def displaySrtFile(srtFilename): | |
with open(srtFilename, 'r', encoding='utf-8') as srtFile: | |
srtContent = srtFile.read() | |
try: | |
df = pd.DataFrame(columns=['start', 'end', 'text']) | |
srt_path = srtFilename | |
subs = pysrt.open(srt_path) | |
objects = [] | |
for sub in subs: | |
start_hours = str(str(sub.start.hours) + "00")[0:2] if len( | |
str(sub.start.hours)) == 2 else str("0" + str(sub.start.hours) + "00")[0:2] | |
end_hours = str(str(sub.end.hours) + "00")[0:2] if len( | |
str(sub.end.hours)) == 2 else str("0" + str(sub.end.hours) + "00")[0:2] | |
start_minutes = str(str(sub.start.minutes) + "00")[0:2] if len( | |
str(sub.start.minutes)) == 2 else str("0" + str(sub.start.minutes) + "00")[0:2] | |
end_minutes = str(str(sub.end.minutes) + "00")[0:2] if len( | |
str(sub.end.minutes)) == 2 else str("0" + str(sub.end.minutes) + "00")[0:2] | |
start_seconds = str(str(sub.start.seconds) + "00")[0:2] if len( | |
str(sub.start.seconds)) == 2 else str("0" + str(sub.start.seconds) + "00")[0:2] | |
end_seconds = str(str(sub.end.seconds) + "00")[0:2] if len( | |
str(sub.end.seconds)) == 2 else str("0" + str(sub.end.seconds) + "00")[0:2] | |
start_millis = str(str(sub.start.milliseconds) + "000")[0:3] | |
end_millis = str(str(sub.end.milliseconds) + "000")[0:3] | |
objects.append([sub.text, f'{start_hours}:{start_minutes}:{start_seconds}.{start_millis}', | |
f'{end_hours}:{end_minutes}:{end_seconds}.{end_millis}']) | |
for object in objects: | |
srt_to_df = { | |
'start': [object[1]], | |
'end': [object[2]], | |
'text': [object[0]] | |
} | |
df = pd.concat([df, pd.DataFrame(srt_to_df)]) | |
except Exception as e: | |
print("Error creating srt df") | |
return srtContent | |
audio_chunked = gr.Interface( | |
fn=transcribe, | |
inputs=inputs, | |
outputs=outputs, | |
allow_flagging="never", | |
title=title, | |
description=description, | |
article=article, | |
examples=audio_examples, | |
) | |
# microphone_chunked = gr.Interface( | |
# fn=transcribe, | |
# inputs=[ | |
# gr.inputs.Audio(source="microphone", | |
# optional=True, type="filepath"), | |
# ], | |
# outputs=[ | |
# gr.outputs.Textbox(label="Transcription").style( | |
# show_copy_button=True), | |
# ], | |
# allow_flagging="never", | |
# title=title, | |
# description=description, | |
# article=article, | |
# ) | |
youtube_chunked = gr.Interface( | |
fn=youtube_transcript, | |
inputs=[ | |
gr.inputs.Textbox(label="Youtube URL", type="text"), | |
], | |
outputs=[ | |
gr.outputs.Textbox(label="Transcription").style( | |
show_copy_button=True), | |
], | |
allow_flagging="never", | |
title=title, | |
description=description, | |
article=article, | |
examples=[ | |
["https://www.youtube.com/watch?v=nlMuHtV82q8&ab_channel=NothingforSale24",], | |
["https://www.youtube.com/watch?v=JzPfMbG1vrE&ab_channel=ExplainerVideosByLauren",], | |
["https://www.youtube.com/watch?v=S68vvV0kod8&ab_channel=Pearl-CohnTelevision"] | |
], | |
) | |
demo = gr.Blocks() | |
with demo: | |
gr.TabbedInterface([audio_chunked, youtube_chunked], [ | |
"Audio File", "Youtube"]) | |
demo.queue(concurrency_count=1, max_size=5) | |
demo.launch(show_api=False) | |