Spaces:
Build error
Build error
Achyut Tiwari
commited on
Commit
•
da74da1
0
Parent(s):
Add files via upload
Browse files- context_server/Dockerfile +23 -0
- context_server/__init__.py +0 -0
- context_server/main.py +122 -0
- context_server/requirements.txt +7 -0
context_server/Dockerfile
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM nvidia/cuda:11.2.2-runtime-ubuntu20.04
|
2 |
+
#set up environment
|
3 |
+
RUN apt-get update && apt-get install --no-install-recommends --no-install-suggests -y curl
|
4 |
+
RUN apt-get install unzip
|
5 |
+
RUN apt-get -y install python3
|
6 |
+
RUN apt-get -y install python3-pip
|
7 |
+
|
8 |
+
WORKDIR /code
|
9 |
+
|
10 |
+
ENV HF_HOME=/code/cache
|
11 |
+
|
12 |
+
COPY ./requirements.txt /code/requirements.txt
|
13 |
+
|
14 |
+
RUN pip3 install --pre torch -f https://download.pytorch.org/whl/nightly/cu113/torch_nightly.html
|
15 |
+
RUN pip3 install --no-cache-dir --upgrade -r /code/requirements.txt
|
16 |
+
|
17 |
+
COPY ./main.py /code/app/main.py
|
18 |
+
|
19 |
+
COPY ./data/kilt_wiki_prepared/ /code/data/kilt_wiki_prepared
|
20 |
+
|
21 |
+
COPY ./data/kilt_wikipedia.faiss /code/data/kilt_wikipedia.faiss
|
22 |
+
|
23 |
+
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "8080"]
|
context_server/__init__.py
ADDED
File without changes
|
context_server/main.py
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from fastapi import FastAPI, Depends, status
|
3 |
+
from fastapi.responses import PlainTextResponse
|
4 |
+
from transformers import AutoTokenizer, AutoModel, DPRQuestionEncoder
|
5 |
+
|
6 |
+
from datasets import load_from_disk
|
7 |
+
import time
|
8 |
+
from typing import Dict
|
9 |
+
|
10 |
+
import jwt
|
11 |
+
from decouple import config
|
12 |
+
from fastapi import Request, HTTPException
|
13 |
+
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
14 |
+
|
15 |
+
JWT_SECRET = config("secret")
|
16 |
+
JWT_ALGORITHM = config("algorithm")
|
17 |
+
|
18 |
+
app = FastAPI()
|
19 |
+
app.ready = False
|
20 |
+
columns = ['kilt_id', 'wikipedia_id', 'wikipedia_title', 'text', 'anchors', 'categories',
|
21 |
+
'wikidata_info', 'history']
|
22 |
+
|
23 |
+
min_snippet_length = 20
|
24 |
+
topk = 21
|
25 |
+
device = ("cuda" if torch.cuda.is_available() else "cpu")
|
26 |
+
model = DPRQuestionEncoder.from_pretrained("vblagoje/dpr-question_encoder-single-lfqa-wiki").to(device)
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained("vblagoje/dpr-question_encoder-single-lfqa-wiki")
|
28 |
+
_ = model.eval()
|
29 |
+
|
30 |
+
index_file_name = "./data/kilt_wikipedia.faiss"
|
31 |
+
|
32 |
+
kilt_wikipedia_paragraphs = load_from_disk("./data/kilt_wiki_prepared")
|
33 |
+
# use paragraphs that are not simple fragments or very short sentences
|
34 |
+
kilt_wikipedia_paragraphs = kilt_wikipedia_paragraphs.filter(lambda x: x["end_character"] > 200)
|
35 |
+
|
36 |
+
|
37 |
+
class JWTBearer(HTTPBearer):
|
38 |
+
def __init__(self, auto_error: bool = True):
|
39 |
+
super(JWTBearer, self).__init__(auto_error=auto_error)
|
40 |
+
|
41 |
+
async def __call__(self, request: Request):
|
42 |
+
credentials: HTTPAuthorizationCredentials = await super(JWTBearer, self).__call__(request)
|
43 |
+
if credentials:
|
44 |
+
if not credentials.scheme == "Bearer":
|
45 |
+
raise HTTPException(status_code=403, detail="Invalid authentication scheme.")
|
46 |
+
if not self.verify_jwt(credentials.credentials):
|
47 |
+
raise HTTPException(status_code=403, detail="Invalid token or expired token.")
|
48 |
+
return credentials.credentials
|
49 |
+
else:
|
50 |
+
raise HTTPException(status_code=403, detail="Invalid authorization code.")
|
51 |
+
|
52 |
+
def verify_jwt(self, jwtoken: str) -> bool:
|
53 |
+
isTokenValid: bool = False
|
54 |
+
|
55 |
+
try:
|
56 |
+
payload = decodeJWT(jwtoken)
|
57 |
+
except:
|
58 |
+
payload = None
|
59 |
+
if payload:
|
60 |
+
isTokenValid = True
|
61 |
+
return isTokenValid
|
62 |
+
|
63 |
+
|
64 |
+
def token_response(token: str):
|
65 |
+
return {
|
66 |
+
"access_token": token
|
67 |
+
}
|
68 |
+
|
69 |
+
|
70 |
+
def signJWT(user_id: str) -> Dict[str, str]:
|
71 |
+
payload = {
|
72 |
+
"user_id": user_id,
|
73 |
+
"expires": time.time() + 6000
|
74 |
+
}
|
75 |
+
token = jwt.encode(payload, JWT_SECRET, algorithm=JWT_ALGORITHM)
|
76 |
+
|
77 |
+
return token_response(token)
|
78 |
+
|
79 |
+
|
80 |
+
def decodeJWT(token: str) -> dict:
|
81 |
+
try:
|
82 |
+
decoded_token = jwt.decode(token, JWT_SECRET, algorithms=[JWT_ALGORITHM])
|
83 |
+
return decoded_token if decoded_token["expires"] >= time.time() else None
|
84 |
+
except:
|
85 |
+
return {}
|
86 |
+
|
87 |
+
|
88 |
+
def embed_questions_for_retrieval(questions):
|
89 |
+
query = tokenizer(questions, max_length=128, padding=True, truncation=True, return_tensors="pt")
|
90 |
+
with torch.no_grad():
|
91 |
+
q_reps = model(query["input_ids"].to(device), query["attention_mask"].to(device)).pooler_output
|
92 |
+
return q_reps.cpu().numpy()
|
93 |
+
|
94 |
+
def query_index(question):
|
95 |
+
question_embedding = embed_questions_for_retrieval([question])
|
96 |
+
scores, wiki_passages = kilt_wikipedia_paragraphs.get_nearest_examples("embeddings", question_embedding, k=topk)
|
97 |
+
columns = ['wikipedia_id', 'title', 'text', 'section', 'start_paragraph_id', 'end_paragraph_id',
|
98 |
+
'start_character', 'end_character']
|
99 |
+
retrieved_examples = []
|
100 |
+
r = list(zip(wiki_passages[k] for k in columns))
|
101 |
+
for i in range(topk):
|
102 |
+
retrieved_examples.append({k: v for k, v in zip(columns, [r[j][0][i] for j in range(len(columns))])})
|
103 |
+
return retrieved_examples
|
104 |
+
|
105 |
+
|
106 |
+
@app.on_event("startup")
|
107 |
+
def startup():
|
108 |
+
kilt_wikipedia_paragraphs.load_faiss_index("embeddings", index_file_name, device=0)
|
109 |
+
app.ready = True
|
110 |
+
|
111 |
+
|
112 |
+
@app.get("/healthz")
|
113 |
+
def healthz():
|
114 |
+
if app.ready:
|
115 |
+
return PlainTextResponse("ok")
|
116 |
+
return PlainTextResponse("service unavailable", status_code=status.HTTP_503_SERVICE_UNAVAILABLE)
|
117 |
+
|
118 |
+
|
119 |
+
@app.get("/find_context", dependencies=[Depends(JWTBearer())])
|
120 |
+
def find_context(question: str = None):
|
121 |
+
return [res for res in query_index(question) if len(res["text"].split()) > min_snippet_length][:int(topk / 3)]
|
122 |
+
|
context_server/requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
datasets
|
2 |
+
transformers
|
3 |
+
fastapi
|
4 |
+
faiss-gpu
|
5 |
+
uvicorn[standard]
|
6 |
+
PyJWT==1.7.1
|
7 |
+
python-decouple==3.3
|