Spaces:
Build error
Build error
import argparse | |
import json | |
import torch | |
from datasets import load_dataset | |
from tqdm.auto import tqdm | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
from transformers import DPRQuestionEncoder | |
from common import embed_questions, clean_question, articles_to_paragraphs, kilt_wikipedia_columns | |
from common import kilt_wikipedia_paragraph_columns as columns | |
def generate_dpr_training_file(args): | |
n_negatives = 7 | |
min_chars_per_passage = 200 | |
def query_index(question, topk=(n_negatives * args.n_positives) * 2): | |
question_embedding = embed_questions(question_model, question_tokenizer, [question]) | |
scores, wiki_passages = kilt_wikipedia_paragraphs.get_nearest_examples("embeddings", question_embedding, k=topk) | |
retrieved_examples = [] | |
r = list(zip(wiki_passages[k] for k in columns)) | |
for i in range(topk): | |
retrieved_examples.append({k: v for k, v in zip(columns, [r[j][0][i] for j in range(len(columns))])}) | |
return retrieved_examples | |
def find_positive_and_hard_negative_ctxs(dataset_index: int, n_positive=1, device="cuda:0"): | |
positive_context_list = [] | |
hard_negative_context_list = [] | |
example = dataset[dataset_index] | |
question = clean_question(example['title']) | |
passages = query_index(question) | |
passages = [dict([(k, p[k]) for k in columns]) for p in passages] | |
q_passage_pairs = [[question, f"{p['title']} {p['text']}" if args.use_title else p["text"]] for p in passages] | |
features = ce_tokenizer(q_passage_pairs, padding="max_length", max_length=256, truncation=True, | |
return_tensors="pt") | |
with torch.no_grad(): | |
passage_scores = ce_model(features["input_ids"].to(device), | |
features["attention_mask"].to(device)).logits | |
for p_idx, p in enumerate(passages): | |
p["score"] = passage_scores[p_idx].item() | |
# order by scores | |
def score_passage(item): | |
return item["score"] | |
# pick the most relevant as the positive answer | |
best_passage_list = sorted(passages, key=score_passage, reverse=True) | |
for idx, item in enumerate(best_passage_list): | |
if idx < n_positive: | |
positive_context_list.append({"title": item["title"], "text": item["text"]}) | |
else: | |
break | |
# least relevant as hard_negative | |
worst_passage_list = sorted(passages, key=score_passage, reverse=False) | |
for idx, hard_negative in enumerate(worst_passage_list): | |
if idx < n_negatives * n_positive: | |
hard_negative_context_list.append({"title": hard_negative["title"], "text": hard_negative["text"]}) | |
else: | |
break | |
assert len(positive_context_list) * n_negatives == len(hard_negative_context_list) | |
return positive_context_list, hard_negative_context_list | |
device = ("cuda" if torch.cuda.is_available() else "cpu") | |
question_model = DPRQuestionEncoder.from_pretrained(args.question_encoder_name).to(device) | |
question_tokenizer = AutoTokenizer.from_pretrained(args.question_encoder_name) | |
_ = question_model.eval() | |
ce_model = AutoModelForSequenceClassification.from_pretrained('cross-encoder/ms-marco-MiniLM-L-4-v2').to(device) | |
ce_tokenizer = AutoTokenizer.from_pretrained('cross-encoder/ms-marco-MiniLM-L-4-v2') | |
_ = ce_model.eval() | |
kilt_wikipedia = load_dataset("kilt_wikipedia", split="full") | |
kilt_wikipedia_paragraphs = kilt_wikipedia.map(articles_to_paragraphs, batched=True, | |
remove_columns=kilt_wikipedia_columns, | |
batch_size=512, | |
cache_file_name=f"../data/wiki_kilt_paragraphs_full.arrow", | |
desc="Expanding wiki articles into paragraphs") | |
# use paragraphs that are not simple fragments or very short sentences | |
# Wikipedia Faiss index needs to fit into a 16 Gb GPU | |
kilt_wikipedia_paragraphs = kilt_wikipedia_paragraphs.filter( | |
lambda x: (x["end_character"] - x["start_character"]) > min_chars_per_passage) | |
kilt_wikipedia_paragraphs.load_faiss_index("embeddings", args.index_file_name, device=0) | |
eli5_train_set = load_dataset("vblagoje/lfqa", split="train") | |
eli5_validation_set = load_dataset("vblagoje/lfqa", split="validation") | |
eli5_test_set = load_dataset("vblagoje/lfqa", split="test") | |
for dataset_name, dataset in zip(["train", "validation", "test"], [eli5_train_set, | |
eli5_validation_set, | |
eli5_test_set]): | |
progress_bar = tqdm(range(len(dataset)), desc=f"Creating DPR formatted {dataset_name} file") | |
with open('eli5-dpr-' + dataset_name + '.jsonl', 'w') as fp: | |
for idx, example in enumerate(dataset): | |
negative_start_idx = 0 | |
positive_context, hard_negative_ctxs = find_positive_and_hard_negative_ctxs(idx, args.n_positives, | |
device) | |
for pc in positive_context: | |
hnc = hard_negative_ctxs[negative_start_idx:negative_start_idx + n_negatives] | |
json.dump({"id": example["q_id"], | |
"question": clean_question(example["title"]), | |
"positive_ctxs": [pc], | |
"hard_negative_ctxs": hnc}, fp) | |
fp.write("\n") | |
negative_start_idx += n_negatives | |
progress_bar.update(1) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description="Creates DPR training file") | |
parser.add_argument( | |
"--use_title", | |
action="store_true", | |
help="If true, use title in addition to passage text for passage embedding", | |
) | |
parser.add_argument( | |
"--n_positives", | |
default=3, | |
help="Number of positive samples per question", | |
) | |
parser.add_argument( | |
"--question_encoder_name", | |
default="vblagoje/dpr-question_encoder-single-lfqa-base", | |
help="Question encoder to use", | |
) | |
parser.add_argument( | |
"--index_file_name", | |
default="../data/kilt_dpr_wikipedia_first.faiss", | |
help="Faiss index with passage embeddings", | |
) | |
main_args, _ = parser.parse_known_args() | |
generate_dpr_training_file(main_args) | |