Spaces:
Runtime error
Runtime error
| import gc | |
| import unittest | |
| import pytest | |
| import torch | |
| from diffusers import ( | |
| StableDiffusionUpscalePipeline, | |
| ) | |
| from diffusers.utils import load_image | |
| from diffusers.utils.testing_utils import ( | |
| backend_empty_cache, | |
| enable_full_determinism, | |
| numpy_cosine_similarity_distance, | |
| require_torch_accelerator, | |
| slow, | |
| torch_device, | |
| ) | |
| from .single_file_testing_utils import SDSingleFileTesterMixin | |
| enable_full_determinism() | |
| class StableDiffusionUpscalePipelineSingleFileSlowTests(unittest.TestCase, SDSingleFileTesterMixin): | |
| pipeline_class = StableDiffusionUpscalePipeline | |
| ckpt_path = "https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler/blob/main/x4-upscaler-ema.safetensors" | |
| original_config = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/x4-upscaling.yaml" | |
| repo_id = "stabilityai/stable-diffusion-x4-upscaler" | |
| def setUp(self): | |
| super().setUp() | |
| gc.collect() | |
| backend_empty_cache(torch_device) | |
| def tearDown(self): | |
| super().tearDown() | |
| gc.collect() | |
| backend_empty_cache(torch_device) | |
| def test_single_file_format_inference_is_same_as_pretrained(self): | |
| image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
| "/sd2-upscale/low_res_cat.png" | |
| ) | |
| prompt = "a cat sitting on a park bench" | |
| pipe = StableDiffusionUpscalePipeline.from_pretrained(self.repo_id) | |
| pipe.enable_model_cpu_offload(device=torch_device) | |
| generator = torch.Generator("cpu").manual_seed(0) | |
| output = pipe(prompt=prompt, image=image, generator=generator, output_type="np", num_inference_steps=3) | |
| image_from_pretrained = output.images[0] | |
| pipe_from_single_file = StableDiffusionUpscalePipeline.from_single_file(self.ckpt_path) | |
| pipe_from_single_file.enable_model_cpu_offload(device=torch_device) | |
| generator = torch.Generator("cpu").manual_seed(0) | |
| output_from_single_file = pipe_from_single_file( | |
| prompt=prompt, image=image, generator=generator, output_type="np", num_inference_steps=3 | |
| ) | |
| image_from_single_file = output_from_single_file.images[0] | |
| assert image_from_pretrained.shape == (512, 512, 3) | |
| assert image_from_single_file.shape == (512, 512, 3) | |
| assert ( | |
| numpy_cosine_similarity_distance(image_from_pretrained.flatten(), image_from_single_file.flatten()) < 1e-3 | |
| ) | |
| def test_single_file_components_with_original_config(self): | |
| super().test_single_file_components_with_original_config() | |
| def test_single_file_components_with_original_config_local_files_only(self): | |
| super().test_single_file_components_with_original_config_local_files_only() | |