Spaces:
Runtime error
Runtime error
| import argparse | |
| from pathlib import Path | |
| from typing import Any, Dict | |
| import torch | |
| from accelerate import init_empty_weights | |
| from safetensors.torch import load_file | |
| from transformers import T5EncoderModel, T5Tokenizer | |
| from diffusers import AutoencoderKLLTXVideo, FlowMatchEulerDiscreteScheduler, LTXPipeline, LTXVideoTransformer3DModel | |
| def remove_keys_(key: str, state_dict: Dict[str, Any]): | |
| state_dict.pop(key) | |
| TOKENIZER_MAX_LENGTH = 128 | |
| TRANSFORMER_KEYS_RENAME_DICT = { | |
| "patchify_proj": "proj_in", | |
| "adaln_single": "time_embed", | |
| "q_norm": "norm_q", | |
| "k_norm": "norm_k", | |
| } | |
| TRANSFORMER_SPECIAL_KEYS_REMAP = { | |
| "vae": remove_keys_, | |
| } | |
| VAE_KEYS_RENAME_DICT = { | |
| # decoder | |
| "up_blocks.0": "mid_block", | |
| "up_blocks.1": "up_blocks.0", | |
| "up_blocks.2": "up_blocks.1.upsamplers.0", | |
| "up_blocks.3": "up_blocks.1", | |
| "up_blocks.4": "up_blocks.2.conv_in", | |
| "up_blocks.5": "up_blocks.2.upsamplers.0", | |
| "up_blocks.6": "up_blocks.2", | |
| "up_blocks.7": "up_blocks.3.conv_in", | |
| "up_blocks.8": "up_blocks.3.upsamplers.0", | |
| "up_blocks.9": "up_blocks.3", | |
| # encoder | |
| "down_blocks.0": "down_blocks.0", | |
| "down_blocks.1": "down_blocks.0.downsamplers.0", | |
| "down_blocks.2": "down_blocks.0.conv_out", | |
| "down_blocks.3": "down_blocks.1", | |
| "down_blocks.4": "down_blocks.1.downsamplers.0", | |
| "down_blocks.5": "down_blocks.1.conv_out", | |
| "down_blocks.6": "down_blocks.2", | |
| "down_blocks.7": "down_blocks.2.downsamplers.0", | |
| "down_blocks.8": "down_blocks.3", | |
| "down_blocks.9": "mid_block", | |
| # common | |
| "conv_shortcut": "conv_shortcut.conv", | |
| "res_blocks": "resnets", | |
| "norm3.norm": "norm3", | |
| "per_channel_statistics.mean-of-means": "latents_mean", | |
| "per_channel_statistics.std-of-means": "latents_std", | |
| } | |
| VAE_091_RENAME_DICT = { | |
| # decoder | |
| "up_blocks.0": "mid_block", | |
| "up_blocks.1": "up_blocks.0.upsamplers.0", | |
| "up_blocks.2": "up_blocks.0", | |
| "up_blocks.3": "up_blocks.1.upsamplers.0", | |
| "up_blocks.4": "up_blocks.1", | |
| "up_blocks.5": "up_blocks.2.upsamplers.0", | |
| "up_blocks.6": "up_blocks.2", | |
| "up_blocks.7": "up_blocks.3.upsamplers.0", | |
| "up_blocks.8": "up_blocks.3", | |
| # common | |
| "last_time_embedder": "time_embedder", | |
| "last_scale_shift_table": "scale_shift_table", | |
| } | |
| VAE_SPECIAL_KEYS_REMAP = { | |
| "per_channel_statistics.channel": remove_keys_, | |
| "per_channel_statistics.mean-of-means": remove_keys_, | |
| "per_channel_statistics.mean-of-stds": remove_keys_, | |
| "model.diffusion_model": remove_keys_, | |
| } | |
| VAE_091_SPECIAL_KEYS_REMAP = { | |
| "timestep_scale_multiplier": remove_keys_, | |
| } | |
| def get_state_dict(saved_dict: Dict[str, Any]) -> Dict[str, Any]: | |
| state_dict = saved_dict | |
| if "model" in saved_dict.keys(): | |
| state_dict = state_dict["model"] | |
| if "module" in saved_dict.keys(): | |
| state_dict = state_dict["module"] | |
| if "state_dict" in saved_dict.keys(): | |
| state_dict = state_dict["state_dict"] | |
| return state_dict | |
| def update_state_dict_inplace(state_dict: Dict[str, Any], old_key: str, new_key: str) -> Dict[str, Any]: | |
| state_dict[new_key] = state_dict.pop(old_key) | |
| def convert_transformer( | |
| ckpt_path: str, | |
| dtype: torch.dtype, | |
| ): | |
| PREFIX_KEY = "model.diffusion_model." | |
| original_state_dict = get_state_dict(load_file(ckpt_path)) | |
| with init_empty_weights(): | |
| transformer = LTXVideoTransformer3DModel() | |
| for key in list(original_state_dict.keys()): | |
| new_key = key[:] | |
| if new_key.startswith(PREFIX_KEY): | |
| new_key = key[len(PREFIX_KEY) :] | |
| for replace_key, rename_key in TRANSFORMER_KEYS_RENAME_DICT.items(): | |
| new_key = new_key.replace(replace_key, rename_key) | |
| update_state_dict_inplace(original_state_dict, key, new_key) | |
| for key in list(original_state_dict.keys()): | |
| for special_key, handler_fn_inplace in TRANSFORMER_SPECIAL_KEYS_REMAP.items(): | |
| if special_key not in key: | |
| continue | |
| handler_fn_inplace(key, original_state_dict) | |
| transformer.load_state_dict(original_state_dict, strict=True, assign=True) | |
| return transformer | |
| def convert_vae(ckpt_path: str, config, dtype: torch.dtype): | |
| PREFIX_KEY = "vae." | |
| original_state_dict = get_state_dict(load_file(ckpt_path)) | |
| with init_empty_weights(): | |
| vae = AutoencoderKLLTXVideo(**config) | |
| for key in list(original_state_dict.keys()): | |
| new_key = key[:] | |
| if new_key.startswith(PREFIX_KEY): | |
| new_key = key[len(PREFIX_KEY) :] | |
| for replace_key, rename_key in VAE_KEYS_RENAME_DICT.items(): | |
| new_key = new_key.replace(replace_key, rename_key) | |
| update_state_dict_inplace(original_state_dict, key, new_key) | |
| for key in list(original_state_dict.keys()): | |
| for special_key, handler_fn_inplace in VAE_SPECIAL_KEYS_REMAP.items(): | |
| if special_key not in key: | |
| continue | |
| handler_fn_inplace(key, original_state_dict) | |
| vae.load_state_dict(original_state_dict, strict=True, assign=True) | |
| return vae | |
| def get_vae_config(version: str) -> Dict[str, Any]: | |
| if version == "0.9.0": | |
| config = { | |
| "in_channels": 3, | |
| "out_channels": 3, | |
| "latent_channels": 128, | |
| "block_out_channels": (128, 256, 512, 512), | |
| "decoder_block_out_channels": (128, 256, 512, 512), | |
| "layers_per_block": (4, 3, 3, 3, 4), | |
| "decoder_layers_per_block": (4, 3, 3, 3, 4), | |
| "spatio_temporal_scaling": (True, True, True, False), | |
| "decoder_spatio_temporal_scaling": (True, True, True, False), | |
| "decoder_inject_noise": (False, False, False, False, False), | |
| "upsample_residual": (False, False, False, False), | |
| "upsample_factor": (1, 1, 1, 1), | |
| "patch_size": 4, | |
| "patch_size_t": 1, | |
| "resnet_norm_eps": 1e-6, | |
| "scaling_factor": 1.0, | |
| "encoder_causal": True, | |
| "decoder_causal": False, | |
| "timestep_conditioning": False, | |
| } | |
| elif version == "0.9.1": | |
| config = { | |
| "in_channels": 3, | |
| "out_channels": 3, | |
| "latent_channels": 128, | |
| "block_out_channels": (128, 256, 512, 512), | |
| "decoder_block_out_channels": (256, 512, 1024), | |
| "layers_per_block": (4, 3, 3, 3, 4), | |
| "decoder_layers_per_block": (5, 6, 7, 8), | |
| "spatio_temporal_scaling": (True, True, True, False), | |
| "decoder_spatio_temporal_scaling": (True, True, True), | |
| "decoder_inject_noise": (True, True, True, False), | |
| "upsample_residual": (True, True, True), | |
| "upsample_factor": (2, 2, 2), | |
| "timestep_conditioning": True, | |
| "patch_size": 4, | |
| "patch_size_t": 1, | |
| "resnet_norm_eps": 1e-6, | |
| "scaling_factor": 1.0, | |
| "encoder_causal": True, | |
| "decoder_causal": False, | |
| } | |
| VAE_KEYS_RENAME_DICT.update(VAE_091_RENAME_DICT) | |
| VAE_SPECIAL_KEYS_REMAP.update(VAE_091_SPECIAL_KEYS_REMAP) | |
| return config | |
| def get_args(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--transformer_ckpt_path", type=str, default=None, help="Path to original transformer checkpoint" | |
| ) | |
| parser.add_argument("--vae_ckpt_path", type=str, default=None, help="Path to original vae checkpoint") | |
| parser.add_argument( | |
| "--text_encoder_cache_dir", type=str, default=None, help="Path to text encoder cache directory" | |
| ) | |
| parser.add_argument( | |
| "--typecast_text_encoder", | |
| action="store_true", | |
| default=False, | |
| help="Whether or not to apply fp16/bf16 precision to text_encoder", | |
| ) | |
| parser.add_argument("--save_pipeline", action="store_true") | |
| parser.add_argument("--output_path", type=str, required=True, help="Path where converted model should be saved") | |
| parser.add_argument("--dtype", default="fp32", help="Torch dtype to save the model in.") | |
| parser.add_argument( | |
| "--version", type=str, default="0.9.0", choices=["0.9.0", "0.9.1"], help="Version of the LTX model" | |
| ) | |
| return parser.parse_args() | |
| DTYPE_MAPPING = { | |
| "fp32": torch.float32, | |
| "fp16": torch.float16, | |
| "bf16": torch.bfloat16, | |
| } | |
| VARIANT_MAPPING = { | |
| "fp32": None, | |
| "fp16": "fp16", | |
| "bf16": "bf16", | |
| } | |
| if __name__ == "__main__": | |
| args = get_args() | |
| transformer = None | |
| dtype = DTYPE_MAPPING[args.dtype] | |
| variant = VARIANT_MAPPING[args.dtype] | |
| output_path = Path(args.output_path) | |
| if args.save_pipeline: | |
| assert args.transformer_ckpt_path is not None and args.vae_ckpt_path is not None | |
| if args.transformer_ckpt_path is not None: | |
| transformer: LTXVideoTransformer3DModel = convert_transformer(args.transformer_ckpt_path, dtype) | |
| if not args.save_pipeline: | |
| transformer.save_pretrained( | |
| output_path / "transformer", safe_serialization=True, max_shard_size="5GB", variant=variant | |
| ) | |
| if args.vae_ckpt_path is not None: | |
| config = get_vae_config(args.version) | |
| vae: AutoencoderKLLTXVideo = convert_vae(args.vae_ckpt_path, config, dtype) | |
| if not args.save_pipeline: | |
| vae.save_pretrained(output_path / "vae", safe_serialization=True, max_shard_size="5GB", variant=variant) | |
| if args.save_pipeline: | |
| text_encoder_id = "google/t5-v1_1-xxl" | |
| tokenizer = T5Tokenizer.from_pretrained(text_encoder_id, model_max_length=TOKENIZER_MAX_LENGTH) | |
| text_encoder = T5EncoderModel.from_pretrained(text_encoder_id, cache_dir=args.text_encoder_cache_dir) | |
| if args.typecast_text_encoder: | |
| text_encoder = text_encoder.to(dtype=dtype) | |
| # Apparently, the conversion does not work anymore without this :shrug: | |
| for param in text_encoder.parameters(): | |
| param.data = param.data.contiguous() | |
| scheduler = FlowMatchEulerDiscreteScheduler( | |
| use_dynamic_shifting=True, | |
| base_shift=0.95, | |
| max_shift=2.05, | |
| base_image_seq_len=1024, | |
| max_image_seq_len=4096, | |
| shift_terminal=0.1, | |
| ) | |
| pipe = LTXPipeline( | |
| scheduler=scheduler, | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| transformer=transformer, | |
| ) | |
| pipe.save_pretrained(args.output_path, safe_serialization=True, variant=variant, max_shard_size="5GB") | |