Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import logging | |
| import os | |
| import shutil | |
| import sys | |
| import tempfile | |
| from diffusers import DiffusionPipeline, SD3Transformer2DModel | |
| sys.path.append("..") | |
| from test_examples_utils import ExamplesTestsAccelerate, run_command # noqa: E402 | |
| logging.basicConfig(level=logging.DEBUG) | |
| logger = logging.getLogger() | |
| stream_handler = logging.StreamHandler(sys.stdout) | |
| logger.addHandler(stream_handler) | |
| class DreamBoothSD3(ExamplesTestsAccelerate): | |
| instance_data_dir = "docs/source/en/imgs" | |
| instance_prompt = "photo" | |
| pretrained_model_name_or_path = "hf-internal-testing/tiny-sd3-pipe" | |
| script_path = "examples/dreambooth/train_dreambooth_sd3.py" | |
| def test_dreambooth(self): | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| test_args = f""" | |
| {self.script_path} | |
| --pretrained_model_name_or_path {self.pretrained_model_name_or_path} | |
| --instance_data_dir {self.instance_data_dir} | |
| --instance_prompt {self.instance_prompt} | |
| --resolution 64 | |
| --train_batch_size 1 | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 2 | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --output_dir {tmpdir} | |
| """.split() | |
| run_command(self._launch_args + test_args) | |
| # save_pretrained smoke test | |
| self.assertTrue(os.path.isfile(os.path.join(tmpdir, "transformer", "diffusion_pytorch_model.safetensors"))) | |
| self.assertTrue(os.path.isfile(os.path.join(tmpdir, "scheduler", "scheduler_config.json"))) | |
| def test_dreambooth_checkpointing(self): | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| # Run training script with checkpointing | |
| # max_train_steps == 4, checkpointing_steps == 2 | |
| # Should create checkpoints at steps 2, 4 | |
| initial_run_args = f""" | |
| {self.script_path} | |
| --pretrained_model_name_or_path {self.pretrained_model_name_or_path} | |
| --instance_data_dir {self.instance_data_dir} | |
| --instance_prompt {self.instance_prompt} | |
| --resolution 64 | |
| --train_batch_size 1 | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 4 | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --output_dir {tmpdir} | |
| --checkpointing_steps=2 | |
| --seed=0 | |
| """.split() | |
| run_command(self._launch_args + initial_run_args) | |
| # check can run the original fully trained output pipeline | |
| pipe = DiffusionPipeline.from_pretrained(tmpdir) | |
| pipe(self.instance_prompt, num_inference_steps=1) | |
| # check checkpoint directories exist | |
| self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-2"))) | |
| self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4"))) | |
| # check can run an intermediate checkpoint | |
| transformer = SD3Transformer2DModel.from_pretrained(tmpdir, subfolder="checkpoint-2/transformer") | |
| pipe = DiffusionPipeline.from_pretrained(self.pretrained_model_name_or_path, transformer=transformer) | |
| pipe(self.instance_prompt, num_inference_steps=1) | |
| # Remove checkpoint 2 so that we can check only later checkpoints exist after resuming | |
| shutil.rmtree(os.path.join(tmpdir, "checkpoint-2")) | |
| # Run training script for 7 total steps resuming from checkpoint 4 | |
| resume_run_args = f""" | |
| {self.script_path} | |
| --pretrained_model_name_or_path {self.pretrained_model_name_or_path} | |
| --instance_data_dir {self.instance_data_dir} | |
| --instance_prompt {self.instance_prompt} | |
| --resolution 64 | |
| --train_batch_size 1 | |
| --gradient_accumulation_steps 1 | |
| --max_train_steps 6 | |
| --learning_rate 5.0e-04 | |
| --scale_lr | |
| --lr_scheduler constant | |
| --lr_warmup_steps 0 | |
| --output_dir {tmpdir} | |
| --checkpointing_steps=2 | |
| --resume_from_checkpoint=checkpoint-4 | |
| --seed=0 | |
| """.split() | |
| run_command(self._launch_args + resume_run_args) | |
| # check can run new fully trained pipeline | |
| pipe = DiffusionPipeline.from_pretrained(tmpdir) | |
| pipe(self.instance_prompt, num_inference_steps=1) | |
| # check old checkpoints do not exist | |
| self.assertFalse(os.path.isdir(os.path.join(tmpdir, "checkpoint-2"))) | |
| # check new checkpoints exist | |
| self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-4"))) | |
| self.assertTrue(os.path.isdir(os.path.join(tmpdir, "checkpoint-6"))) | |
| def test_dreambooth_checkpointing_checkpoints_total_limit(self): | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| test_args = f""" | |
| {self.script_path} | |
| --pretrained_model_name_or_path={self.pretrained_model_name_or_path} | |
| --instance_data_dir={self.instance_data_dir} | |
| --output_dir={tmpdir} | |
| --instance_prompt={self.instance_prompt} | |
| --resolution=64 | |
| --train_batch_size=1 | |
| --gradient_accumulation_steps=1 | |
| --max_train_steps=6 | |
| --checkpoints_total_limit=2 | |
| --checkpointing_steps=2 | |
| """.split() | |
| run_command(self._launch_args + test_args) | |
| self.assertEqual( | |
| {x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
| {"checkpoint-4", "checkpoint-6"}, | |
| ) | |
| def test_dreambooth_checkpointing_checkpoints_total_limit_removes_multiple_checkpoints(self): | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| test_args = f""" | |
| {self.script_path} | |
| --pretrained_model_name_or_path={self.pretrained_model_name_or_path} | |
| --instance_data_dir={self.instance_data_dir} | |
| --output_dir={tmpdir} | |
| --instance_prompt={self.instance_prompt} | |
| --resolution=64 | |
| --train_batch_size=1 | |
| --gradient_accumulation_steps=1 | |
| --max_train_steps=4 | |
| --checkpointing_steps=2 | |
| """.split() | |
| run_command(self._launch_args + test_args) | |
| self.assertEqual( | |
| {x for x in os.listdir(tmpdir) if "checkpoint" in x}, | |
| {"checkpoint-2", "checkpoint-4"}, | |
| ) | |
| resume_run_args = f""" | |
| {self.script_path} | |
| --pretrained_model_name_or_path={self.pretrained_model_name_or_path} | |
| --instance_data_dir={self.instance_data_dir} | |
| --output_dir={tmpdir} | |
| --instance_prompt={self.instance_prompt} | |
| --resolution=64 | |
| --train_batch_size=1 | |
| --gradient_accumulation_steps=1 | |
| --max_train_steps=8 | |
| --checkpointing_steps=2 | |
| --resume_from_checkpoint=checkpoint-4 | |
| --checkpoints_total_limit=2 | |
| """.split() | |
| run_command(self._launch_args + resume_run_args) | |
| self.assertEqual({x for x in os.listdir(tmpdir) if "checkpoint" in x}, {"checkpoint-6", "checkpoint-8"}) | |