Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from diffusers import ConsistencyDecoderVAE, StableDiffusionPipeline | |
| from diffusers.utils.testing_utils import ( | |
| enable_full_determinism, | |
| load_image, | |
| slow, | |
| torch_all_close, | |
| torch_device, | |
| ) | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from ..test_modeling_common import ModelTesterMixin | |
| enable_full_determinism() | |
| class ConsistencyDecoderVAETests(ModelTesterMixin, unittest.TestCase): | |
| model_class = ConsistencyDecoderVAE | |
| main_input_name = "sample" | |
| base_precision = 1e-2 | |
| forward_requires_fresh_args = True | |
| def get_consistency_vae_config(self, block_out_channels=None, norm_num_groups=None): | |
| block_out_channels = block_out_channels or [2, 4] | |
| norm_num_groups = norm_num_groups or 2 | |
| return { | |
| "encoder_block_out_channels": block_out_channels, | |
| "encoder_in_channels": 3, | |
| "encoder_out_channels": 4, | |
| "encoder_down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels), | |
| "decoder_add_attention": False, | |
| "decoder_block_out_channels": block_out_channels, | |
| "decoder_down_block_types": ["ResnetDownsampleBlock2D"] * len(block_out_channels), | |
| "decoder_downsample_padding": 1, | |
| "decoder_in_channels": 7, | |
| "decoder_layers_per_block": 1, | |
| "decoder_norm_eps": 1e-05, | |
| "decoder_norm_num_groups": norm_num_groups, | |
| "encoder_norm_num_groups": norm_num_groups, | |
| "decoder_num_train_timesteps": 1024, | |
| "decoder_out_channels": 6, | |
| "decoder_resnet_time_scale_shift": "scale_shift", | |
| "decoder_time_embedding_type": "learned", | |
| "decoder_up_block_types": ["ResnetUpsampleBlock2D"] * len(block_out_channels), | |
| "scaling_factor": 1, | |
| "latent_channels": 4, | |
| } | |
| def inputs_dict(self, seed=None): | |
| if seed is None: | |
| generator = torch.Generator("cpu").manual_seed(0) | |
| else: | |
| generator = torch.Generator("cpu").manual_seed(seed) | |
| image = randn_tensor((4, 3, 32, 32), generator=generator, device=torch.device(torch_device)) | |
| return {"sample": image, "generator": generator} | |
| def input_shape(self): | |
| return (3, 32, 32) | |
| def output_shape(self): | |
| return (3, 32, 32) | |
| def init_dict(self): | |
| return self.get_consistency_vae_config() | |
| def prepare_init_args_and_inputs_for_common(self): | |
| return self.init_dict, self.inputs_dict() | |
| def test_enable_disable_tiling(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| torch.manual_seed(0) | |
| model = self.model_class(**init_dict).to(torch_device) | |
| inputs_dict.update({"return_dict": False}) | |
| _ = inputs_dict.pop("generator") | |
| torch.manual_seed(0) | |
| output_without_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
| torch.manual_seed(0) | |
| model.enable_tiling() | |
| output_with_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
| self.assertLess( | |
| (output_without_tiling.detach().cpu().numpy() - output_with_tiling.detach().cpu().numpy()).max(), | |
| 0.5, | |
| "VAE tiling should not affect the inference results", | |
| ) | |
| torch.manual_seed(0) | |
| model.disable_tiling() | |
| output_without_tiling_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
| self.assertEqual( | |
| output_without_tiling.detach().cpu().numpy().all(), | |
| output_without_tiling_2.detach().cpu().numpy().all(), | |
| "Without tiling outputs should match with the outputs when tiling is manually disabled.", | |
| ) | |
| def test_enable_disable_slicing(self): | |
| init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() | |
| torch.manual_seed(0) | |
| model = self.model_class(**init_dict).to(torch_device) | |
| inputs_dict.update({"return_dict": False}) | |
| _ = inputs_dict.pop("generator") | |
| torch.manual_seed(0) | |
| output_without_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
| torch.manual_seed(0) | |
| model.enable_slicing() | |
| output_with_slicing = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
| self.assertLess( | |
| (output_without_slicing.detach().cpu().numpy() - output_with_slicing.detach().cpu().numpy()).max(), | |
| 0.5, | |
| "VAE slicing should not affect the inference results", | |
| ) | |
| torch.manual_seed(0) | |
| model.disable_slicing() | |
| output_without_slicing_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0] | |
| self.assertEqual( | |
| output_without_slicing.detach().cpu().numpy().all(), | |
| output_without_slicing_2.detach().cpu().numpy().all(), | |
| "Without slicing outputs should match with the outputs when slicing is manually disabled.", | |
| ) | |
| class ConsistencyDecoderVAEIntegrationTests(unittest.TestCase): | |
| def setUp(self): | |
| # clean up the VRAM before each test | |
| super().setUp() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def tearDown(self): | |
| # clean up the VRAM after each test | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def test_encode_decode(self): | |
| vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder") # TODO - update | |
| vae.to(torch_device) | |
| image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
| "/img2img/sketch-mountains-input.jpg" | |
| ).resize((256, 256)) | |
| image = torch.from_numpy(np.array(image).transpose(2, 0, 1).astype(np.float32) / 127.5 - 1)[None, :, :, :].to( | |
| torch_device | |
| ) | |
| latent = vae.encode(image).latent_dist.mean | |
| sample = vae.decode(latent, generator=torch.Generator("cpu").manual_seed(0)).sample | |
| actual_output = sample[0, :2, :2, :2].flatten().cpu() | |
| expected_output = torch.tensor([-0.0141, -0.0014, 0.0115, 0.0086, 0.1051, 0.1053, 0.1031, 0.1024]) | |
| assert torch_all_close(actual_output, expected_output, atol=5e-3) | |
| def test_sd(self): | |
| vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder") # TODO - update | |
| pipe = StableDiffusionPipeline.from_pretrained( | |
| "stable-diffusion-v1-5/stable-diffusion-v1-5", vae=vae, safety_checker=None | |
| ) | |
| pipe.to(torch_device) | |
| out = pipe( | |
| "horse", | |
| num_inference_steps=2, | |
| output_type="pt", | |
| generator=torch.Generator("cpu").manual_seed(0), | |
| ).images[0] | |
| actual_output = out[:2, :2, :2].flatten().cpu() | |
| expected_output = torch.tensor([0.7686, 0.8228, 0.6489, 0.7455, 0.8661, 0.8797, 0.8241, 0.8759]) | |
| assert torch_all_close(actual_output, expected_output, atol=5e-3) | |
| def test_encode_decode_f16(self): | |
| vae = ConsistencyDecoderVAE.from_pretrained( | |
| "openai/consistency-decoder", torch_dtype=torch.float16 | |
| ) # TODO - update | |
| vae.to(torch_device) | |
| image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
| "/img2img/sketch-mountains-input.jpg" | |
| ).resize((256, 256)) | |
| image = ( | |
| torch.from_numpy(np.array(image).transpose(2, 0, 1).astype(np.float32) / 127.5 - 1)[None, :, :, :] | |
| .half() | |
| .to(torch_device) | |
| ) | |
| latent = vae.encode(image).latent_dist.mean | |
| sample = vae.decode(latent, generator=torch.Generator("cpu").manual_seed(0)).sample | |
| actual_output = sample[0, :2, :2, :2].flatten().cpu() | |
| expected_output = torch.tensor( | |
| [-0.0111, -0.0125, -0.0017, -0.0007, 0.1257, 0.1465, 0.1450, 0.1471], | |
| dtype=torch.float16, | |
| ) | |
| assert torch_all_close(actual_output, expected_output, atol=5e-3) | |
| def test_sd_f16(self): | |
| vae = ConsistencyDecoderVAE.from_pretrained( | |
| "openai/consistency-decoder", torch_dtype=torch.float16 | |
| ) # TODO - update | |
| pipe = StableDiffusionPipeline.from_pretrained( | |
| "stable-diffusion-v1-5/stable-diffusion-v1-5", | |
| torch_dtype=torch.float16, | |
| vae=vae, | |
| safety_checker=None, | |
| ) | |
| pipe.to(torch_device) | |
| out = pipe( | |
| "horse", | |
| num_inference_steps=2, | |
| output_type="pt", | |
| generator=torch.Generator("cpu").manual_seed(0), | |
| ).images[0] | |
| actual_output = out[:2, :2, :2].flatten().cpu() | |
| expected_output = torch.tensor( | |
| [0.0000, 0.0249, 0.0000, 0.0000, 0.1709, 0.2773, 0.0471, 0.1035], | |
| dtype=torch.float16, | |
| ) | |
| assert torch_all_close(actual_output, expected_output, atol=5e-3) | |
| def test_vae_tiling(self): | |
| vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=torch.float16) | |
| pipe = StableDiffusionPipeline.from_pretrained( | |
| "stable-diffusion-v1-5/stable-diffusion-v1-5", vae=vae, safety_checker=None, torch_dtype=torch.float16 | |
| ) | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| out_1 = pipe( | |
| "horse", | |
| num_inference_steps=2, | |
| output_type="pt", | |
| generator=torch.Generator("cpu").manual_seed(0), | |
| ).images[0] | |
| # make sure tiled vae decode yields the same result | |
| pipe.enable_vae_tiling() | |
| out_2 = pipe( | |
| "horse", | |
| num_inference_steps=2, | |
| output_type="pt", | |
| generator=torch.Generator("cpu").manual_seed(0), | |
| ).images[0] | |
| assert torch_all_close(out_1, out_2, atol=5e-3) | |
| # test that tiled decode works with various shapes | |
| shapes = [(1, 4, 73, 97), (1, 4, 97, 73), (1, 4, 49, 65), (1, 4, 65, 49)] | |
| with torch.no_grad(): | |
| for shape in shapes: | |
| image = torch.zeros(shape, device=torch_device, dtype=pipe.vae.dtype) | |
| pipe.vae.decode(image) | |