Create rvc.py
Browse files
rvc.py
ADDED
@@ -0,0 +1,556 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess, torch, os, traceback, sys, warnings, shutil, numpy as np
|
2 |
+
from mega import Mega
|
3 |
+
os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1"
|
4 |
+
import threading
|
5 |
+
from time import sleep
|
6 |
+
from subprocess import Popen
|
7 |
+
import faiss
|
8 |
+
from random import shuffle
|
9 |
+
import json, datetime, requests
|
10 |
+
from gtts import gTTS
|
11 |
+
now_dir = os.getcwd()
|
12 |
+
sys.path.append(now_dir)
|
13 |
+
tmp = os.path.join(now_dir, "TEMP")
|
14 |
+
shutil.rmtree(tmp, ignore_errors=True)
|
15 |
+
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
|
16 |
+
os.makedirs(tmp, exist_ok=True)
|
17 |
+
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
|
18 |
+
os.makedirs(os.path.join(now_dir, "weights"), exist_ok=True)
|
19 |
+
os.environ["TEMP"] = tmp
|
20 |
+
warnings.filterwarnings("ignore")
|
21 |
+
torch.manual_seed(114514)
|
22 |
+
from i18n import I18nAuto
|
23 |
+
|
24 |
+
import signal
|
25 |
+
|
26 |
+
import math
|
27 |
+
|
28 |
+
from utils import load_audio, CSVutil
|
29 |
+
|
30 |
+
global DoFormant, Quefrency, Timbre
|
31 |
+
|
32 |
+
if not os.path.isdir('csvdb/'):
|
33 |
+
os.makedirs('csvdb')
|
34 |
+
frmnt, stp = open("csvdb/formanting.csv", 'w'), open("csvdb/stop.csv", 'w')
|
35 |
+
frmnt.close()
|
36 |
+
stp.close()
|
37 |
+
|
38 |
+
try:
|
39 |
+
DoFormant, Quefrency, Timbre = CSVutil('csvdb/formanting.csv', 'r', 'formanting')
|
40 |
+
DoFormant = (
|
41 |
+
lambda DoFormant: True if DoFormant.lower() == 'true' else (False if DoFormant.lower() == 'false' else DoFormant)
|
42 |
+
)(DoFormant)
|
43 |
+
except (ValueError, TypeError, IndexError):
|
44 |
+
DoFormant, Quefrency, Timbre = False, 1.0, 1.0
|
45 |
+
CSVutil('csvdb/formanting.csv', 'w+', 'formanting', DoFormant, Quefrency, Timbre)
|
46 |
+
|
47 |
+
def download_models():
|
48 |
+
# Download hubert base model if not present
|
49 |
+
if not os.path.isfile('./hubert_base.pt'):
|
50 |
+
response = requests.get('https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt')
|
51 |
+
|
52 |
+
if response.status_code == 200:
|
53 |
+
with open('./hubert_base.pt', 'wb') as f:
|
54 |
+
f.write(response.content)
|
55 |
+
print("Downloaded hubert base model file successfully. File saved to ./hubert_base.pt.")
|
56 |
+
else:
|
57 |
+
raise Exception("Failed to download hubert base model file. Status code: " + str(response.status_code) + ".")
|
58 |
+
|
59 |
+
# Download rmvpe model if not present
|
60 |
+
if not os.path.isfile('./rmvpe.pt'):
|
61 |
+
response = requests.get('https://drive.usercontent.google.com/download?id=1Hkn4kNuVFRCNQwyxQFRtmzmMBGpQxptI&export=download&authuser=0&confirm=t&uuid=0b3a40de-465b-4c65-8c41-135b0b45c3f7&at=APZUnTV3lA3LnyTbeuduura6Dmi2:1693724254058')
|
62 |
+
|
63 |
+
if response.status_code == 200:
|
64 |
+
with open('./rmvpe.pt', 'wb') as f:
|
65 |
+
f.write(response.content)
|
66 |
+
print("Downloaded rmvpe model file successfully. File saved to ./rmvpe.pt.")
|
67 |
+
else:
|
68 |
+
raise Exception("Failed to download rmvpe model file. Status code: " + str(response.status_code) + ".")
|
69 |
+
|
70 |
+
download_models()
|
71 |
+
|
72 |
+
|
73 |
+
def formant_apply(qfrency, tmbre):
|
74 |
+
Quefrency = qfrency
|
75 |
+
Timbre = tmbre
|
76 |
+
DoFormant = True
|
77 |
+
CSVutil('csvdb/formanting.csv', 'w+', 'formanting', DoFormant, qfrency, tmbre)
|
78 |
+
|
79 |
+
return ({"value": Quefrency, "__type__": "update"}, {"value": Timbre, "__type__": "update"})
|
80 |
+
|
81 |
+
def get_fshift_presets():
|
82 |
+
fshift_presets_list = []
|
83 |
+
for dirpath, _, filenames in os.walk("./formantshiftcfg/"):
|
84 |
+
for filename in filenames:
|
85 |
+
if filename.endswith(".txt"):
|
86 |
+
fshift_presets_list.append(os.path.join(dirpath,filename).replace('\\','/'))
|
87 |
+
|
88 |
+
if len(fshift_presets_list) > 0:
|
89 |
+
return fshift_presets_list
|
90 |
+
else:
|
91 |
+
return ''
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
def formant_enabled(cbox, qfrency, tmbre, frmntapply, formantpreset, formant_refresh_button):
|
96 |
+
|
97 |
+
if (cbox):
|
98 |
+
|
99 |
+
DoFormant = True
|
100 |
+
CSVutil('csvdb/formanting.csv', 'w+', 'formanting', DoFormant, qfrency, tmbre)
|
101 |
+
#print(f"is checked? - {cbox}\ngot {DoFormant}")
|
102 |
+
|
103 |
+
return (
|
104 |
+
{"value": True, "__type__": "update"},
|
105 |
+
{"visible": True, "__type__": "update"},
|
106 |
+
{"visible": True, "__type__": "update"},
|
107 |
+
{"visible": True, "__type__": "update"},
|
108 |
+
{"visible": True, "__type__": "update"},
|
109 |
+
{"visible": True, "__type__": "update"},
|
110 |
+
)
|
111 |
+
|
112 |
+
|
113 |
+
else:
|
114 |
+
|
115 |
+
DoFormant = False
|
116 |
+
CSVutil('csvdb/formanting.csv', 'w+', 'formanting', DoFormant, qfrency, tmbre)
|
117 |
+
|
118 |
+
#print(f"is checked? - {cbox}\ngot {DoFormant}")
|
119 |
+
return (
|
120 |
+
{"value": False, "__type__": "update"},
|
121 |
+
{"visible": False, "__type__": "update"},
|
122 |
+
{"visible": False, "__type__": "update"},
|
123 |
+
{"visible": False, "__type__": "update"},
|
124 |
+
{"visible": False, "__type__": "update"},
|
125 |
+
{"visible": False, "__type__": "update"},
|
126 |
+
{"visible": False, "__type__": "update"},
|
127 |
+
)
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
def preset_apply(preset, qfer, tmbr):
|
132 |
+
if str(preset) != '':
|
133 |
+
with open(str(preset), 'r') as p:
|
134 |
+
content = p.readlines()
|
135 |
+
qfer, tmbr = content[0].split('\n')[0], content[1]
|
136 |
+
|
137 |
+
formant_apply(qfer, tmbr)
|
138 |
+
else:
|
139 |
+
pass
|
140 |
+
return ({"value": qfer, "__type__": "update"}, {"value": tmbr, "__type__": "update"})
|
141 |
+
|
142 |
+
def update_fshift_presets(preset, qfrency, tmbre):
|
143 |
+
|
144 |
+
qfrency, tmbre = preset_apply(preset, qfrency, tmbre)
|
145 |
+
|
146 |
+
if (str(preset) != ''):
|
147 |
+
with open(str(preset), 'r') as p:
|
148 |
+
content = p.readlines()
|
149 |
+
qfrency, tmbre = content[0].split('\n')[0], content[1]
|
150 |
+
|
151 |
+
formant_apply(qfrency, tmbre)
|
152 |
+
else:
|
153 |
+
pass
|
154 |
+
return (
|
155 |
+
{"choices": get_fshift_presets(), "__type__": "update"},
|
156 |
+
{"value": qfrency, "__type__": "update"},
|
157 |
+
{"value": tmbre, "__type__": "update"},
|
158 |
+
)
|
159 |
+
|
160 |
+
i18n = I18nAuto()
|
161 |
+
#i18n.print()
|
162 |
+
# 判断是否有能用来训练和加速推理的N卡
|
163 |
+
ngpu = torch.cuda.device_count()
|
164 |
+
gpu_infos = []
|
165 |
+
mem = []
|
166 |
+
if (not torch.cuda.is_available()) or ngpu == 0:
|
167 |
+
if_gpu_ok = False
|
168 |
+
else:
|
169 |
+
if_gpu_ok = False
|
170 |
+
for i in range(ngpu):
|
171 |
+
gpu_name = torch.cuda.get_device_name(i)
|
172 |
+
if (
|
173 |
+
"10" in gpu_name
|
174 |
+
or "16" in gpu_name
|
175 |
+
or "20" in gpu_name
|
176 |
+
or "30" in gpu_name
|
177 |
+
or "40" in gpu_name
|
178 |
+
or "A2" in gpu_name.upper()
|
179 |
+
or "A3" in gpu_name.upper()
|
180 |
+
or "A4" in gpu_name.upper()
|
181 |
+
or "P4" in gpu_name.upper()
|
182 |
+
or "A50" in gpu_name.upper()
|
183 |
+
or "A60" in gpu_name.upper()
|
184 |
+
or "70" in gpu_name
|
185 |
+
or "80" in gpu_name
|
186 |
+
or "90" in gpu_name
|
187 |
+
or "M4" in gpu_name.upper()
|
188 |
+
or "T4" in gpu_name.upper()
|
189 |
+
or "TITAN" in gpu_name.upper()
|
190 |
+
): # A10#A100#V100#A40#P40#M40#K80#A4500
|
191 |
+
if_gpu_ok = True # 至少有一张能用的N卡
|
192 |
+
gpu_infos.append("%s\t%s" % (i, gpu_name))
|
193 |
+
mem.append(
|
194 |
+
int(
|
195 |
+
torch.cuda.get_device_properties(i).total_memory
|
196 |
+
/ 1024
|
197 |
+
/ 1024
|
198 |
+
/ 1024
|
199 |
+
+ 0.4
|
200 |
+
)
|
201 |
+
)
|
202 |
+
if if_gpu_ok == True and len(gpu_infos) > 0:
|
203 |
+
gpu_info = "\n".join(gpu_infos)
|
204 |
+
default_batch_size = min(mem) // 2
|
205 |
+
else:
|
206 |
+
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
|
207 |
+
default_batch_size = 1
|
208 |
+
gpus = "-".join([i[0] for i in gpu_infos])
|
209 |
+
from lib.infer_pack.models import (
|
210 |
+
SynthesizerTrnMs256NSFsid,
|
211 |
+
SynthesizerTrnMs256NSFsid_nono,
|
212 |
+
SynthesizerTrnMs768NSFsid,
|
213 |
+
SynthesizerTrnMs768NSFsid_nono,
|
214 |
+
)
|
215 |
+
import soundfile as sf
|
216 |
+
from fairseq import checkpoint_utils
|
217 |
+
import gradio as gr
|
218 |
+
import logging
|
219 |
+
from vc_infer_pipeline import VC
|
220 |
+
from config import Config
|
221 |
+
|
222 |
+
config = Config()
|
223 |
+
# from trainset_preprocess_pipeline import PreProcess
|
224 |
+
logging.getLogger("numba").setLevel(logging.WARNING)
|
225 |
+
|
226 |
+
hubert_model = None
|
227 |
+
|
228 |
+
def load_hubert():
|
229 |
+
global hubert_model
|
230 |
+
models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
|
231 |
+
["hubert_base.pt"],
|
232 |
+
suffix="",
|
233 |
+
)
|
234 |
+
hubert_model = models[0]
|
235 |
+
hubert_model = hubert_model.to(config.device)
|
236 |
+
if config.is_half:
|
237 |
+
hubert_model = hubert_model.half()
|
238 |
+
else:
|
239 |
+
hubert_model = hubert_model.float()
|
240 |
+
hubert_model.eval()
|
241 |
+
|
242 |
+
|
243 |
+
weight_root = "weights"
|
244 |
+
index_root = "logs"
|
245 |
+
names = []
|
246 |
+
for name in os.listdir(weight_root):
|
247 |
+
if name.endswith(".pth"):
|
248 |
+
names.append(name)
|
249 |
+
index_paths = []
|
250 |
+
for root, dirs, files in os.walk(index_root, topdown=False):
|
251 |
+
for name in files:
|
252 |
+
if name.endswith(".index") and "trained" not in name:
|
253 |
+
index_paths.append("%s/%s" % (root, name))
|
254 |
+
|
255 |
+
|
256 |
+
|
257 |
+
def vc_single(
|
258 |
+
sid,
|
259 |
+
input_audio_path,
|
260 |
+
f0_up_key,
|
261 |
+
f0_file,
|
262 |
+
f0_method,
|
263 |
+
file_index,
|
264 |
+
#file_index2,
|
265 |
+
# file_big_npy,
|
266 |
+
index_rate,
|
267 |
+
filter_radius,
|
268 |
+
resample_sr,
|
269 |
+
rms_mix_rate,
|
270 |
+
protect,
|
271 |
+
crepe_hop_length,
|
272 |
+
): # spk_item, input_audio0, vc_transform0,f0_file,f0method0
|
273 |
+
global tgt_sr, net_g, vc, hubert_model, version
|
274 |
+
if input_audio_path is None:
|
275 |
+
return "You need to upload an audio", None
|
276 |
+
f0_up_key = int(f0_up_key)
|
277 |
+
try:
|
278 |
+
audio = load_audio(input_audio_path, 16000, DoFormant, Quefrency, Timbre)
|
279 |
+
audio_max = np.abs(audio).max() / 0.95
|
280 |
+
if audio_max > 1:
|
281 |
+
audio /= audio_max
|
282 |
+
times = [0, 0, 0]
|
283 |
+
if hubert_model == None:
|
284 |
+
load_hubert()
|
285 |
+
if_f0 = cpt.get("f0", 1)
|
286 |
+
file_index = (
|
287 |
+
(
|
288 |
+
file_index.strip(" ")
|
289 |
+
.strip('"')
|
290 |
+
.strip("\n")
|
291 |
+
.strip('"')
|
292 |
+
.strip(" ")
|
293 |
+
.replace("trained", "added")
|
294 |
+
)
|
295 |
+
) # 防止小白写错,自动帮他替换掉
|
296 |
+
# file_big_npy = (
|
297 |
+
# file_big_npy.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
298 |
+
# )
|
299 |
+
audio_opt = vc.pipeline(
|
300 |
+
hubert_model,
|
301 |
+
net_g,
|
302 |
+
sid,
|
303 |
+
audio,
|
304 |
+
input_audio_path,
|
305 |
+
times,
|
306 |
+
f0_up_key,
|
307 |
+
f0_method,
|
308 |
+
file_index,
|
309 |
+
# file_big_npy,
|
310 |
+
index_rate,
|
311 |
+
if_f0,
|
312 |
+
filter_radius,
|
313 |
+
tgt_sr,
|
314 |
+
resample_sr,
|
315 |
+
rms_mix_rate,
|
316 |
+
version,
|
317 |
+
protect,
|
318 |
+
crepe_hop_length,
|
319 |
+
f0_file=f0_file,
|
320 |
+
)
|
321 |
+
if resample_sr >= 16000 and tgt_sr != resample_sr:
|
322 |
+
tgt_sr = resample_sr
|
323 |
+
index_info = (
|
324 |
+
"Using index:%s." % file_index
|
325 |
+
if os.path.exists(file_index)
|
326 |
+
else "Index not used."
|
327 |
+
)
|
328 |
+
return "Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % (
|
329 |
+
index_info,
|
330 |
+
times[0],
|
331 |
+
times[1],
|
332 |
+
times[2],
|
333 |
+
), (tgt_sr, audio_opt)
|
334 |
+
except:
|
335 |
+
info = traceback.format_exc()
|
336 |
+
print(info)
|
337 |
+
return info, (None, None)
|
338 |
+
|
339 |
+
|
340 |
+
def vc_multi(
|
341 |
+
sid,
|
342 |
+
dir_path,
|
343 |
+
opt_root,
|
344 |
+
paths,
|
345 |
+
f0_up_key,
|
346 |
+
f0_method,
|
347 |
+
file_index,
|
348 |
+
file_index2,
|
349 |
+
# file_big_npy,
|
350 |
+
index_rate,
|
351 |
+
filter_radius,
|
352 |
+
resample_sr,
|
353 |
+
rms_mix_rate,
|
354 |
+
protect,
|
355 |
+
format1,
|
356 |
+
crepe_hop_length,
|
357 |
+
):
|
358 |
+
try:
|
359 |
+
dir_path = (
|
360 |
+
dir_path.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
361 |
+
) # 防止小白拷路径头尾带了空格和"和回车
|
362 |
+
opt_root = opt_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
|
363 |
+
os.makedirs(opt_root, exist_ok=True)
|
364 |
+
try:
|
365 |
+
if dir_path != "":
|
366 |
+
paths = [os.path.join(dir_path, name) for name in os.listdir(dir_path)]
|
367 |
+
else:
|
368 |
+
paths = [path.name for path in paths]
|
369 |
+
except:
|
370 |
+
traceback.print_exc()
|
371 |
+
paths = [path.name for path in paths]
|
372 |
+
infos = []
|
373 |
+
for path in paths:
|
374 |
+
info, opt = vc_single(
|
375 |
+
sid,
|
376 |
+
path,
|
377 |
+
f0_up_key,
|
378 |
+
None,
|
379 |
+
f0_method,
|
380 |
+
file_index,
|
381 |
+
# file_big_npy,
|
382 |
+
index_rate,
|
383 |
+
filter_radius,
|
384 |
+
resample_sr,
|
385 |
+
rms_mix_rate,
|
386 |
+
protect,
|
387 |
+
crepe_hop_length
|
388 |
+
)
|
389 |
+
if "Success" in info:
|
390 |
+
try:
|
391 |
+
tgt_sr, audio_opt = opt
|
392 |
+
if format1 in ["wav", "flac"]:
|
393 |
+
sf.write(
|
394 |
+
"%s/%s.%s" % (opt_root, os.path.basename(path), format1),
|
395 |
+
audio_opt,
|
396 |
+
tgt_sr,
|
397 |
+
)
|
398 |
+
else:
|
399 |
+
path = "%s/%s.wav" % (opt_root, os.path.basename(path))
|
400 |
+
sf.write(
|
401 |
+
path,
|
402 |
+
audio_opt,
|
403 |
+
tgt_sr,
|
404 |
+
)
|
405 |
+
if os.path.exists(path):
|
406 |
+
os.system(
|
407 |
+
"ffmpeg -i %s -vn %s -q:a 2 -y"
|
408 |
+
% (path, path[:-4] + ".%s" % format1)
|
409 |
+
)
|
410 |
+
except:
|
411 |
+
info += traceback.format_exc()
|
412 |
+
infos.append("%s->%s" % (os.path.basename(path), info))
|
413 |
+
yield "\n".join(infos)
|
414 |
+
yield "\n".join(infos)
|
415 |
+
except:
|
416 |
+
yield traceback.format_exc()
|
417 |
+
|
418 |
+
# 一个选项卡全局只能有一个音色
|
419 |
+
def get_vc(sid):
|
420 |
+
global n_spk, tgt_sr, net_g, vc, cpt, version
|
421 |
+
if sid == "" or sid == []:
|
422 |
+
global hubert_model
|
423 |
+
if hubert_model != None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
|
424 |
+
print("clean_empty_cache")
|
425 |
+
del net_g, n_spk, vc, hubert_model, tgt_sr # ,cpt
|
426 |
+
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
|
427 |
+
if torch.cuda.is_available():
|
428 |
+
torch.cuda.empty_cache()
|
429 |
+
###楼下不这么折腾清理不干净
|
430 |
+
if_f0 = cpt.get("f0", 1)
|
431 |
+
version = cpt.get("version", "v1")
|
432 |
+
if version == "v1":
|
433 |
+
if if_f0 == 1:
|
434 |
+
net_g = SynthesizerTrnMs256NSFsid(
|
435 |
+
*cpt["config"], is_half=config.is_half
|
436 |
+
)
|
437 |
+
else:
|
438 |
+
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
439 |
+
elif version == "v2":
|
440 |
+
if if_f0 == 1:
|
441 |
+
net_g = SynthesizerTrnMs768NSFsid(
|
442 |
+
*cpt["config"], is_half=config.is_half
|
443 |
+
)
|
444 |
+
else:
|
445 |
+
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
446 |
+
del net_g, cpt
|
447 |
+
if torch.cuda.is_available():
|
448 |
+
torch.cuda.empty_cache()
|
449 |
+
cpt = None
|
450 |
+
return {"visible": False, "__type__": "update"}
|
451 |
+
person = "%s/%s" % (weight_root, sid)
|
452 |
+
print("loading %s" % person)
|
453 |
+
cpt = torch.load(person, map_location="cpu")
|
454 |
+
tgt_sr = cpt["config"][-1]
|
455 |
+
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
|
456 |
+
if_f0 = cpt.get("f0", 1)
|
457 |
+
version = cpt.get("version", "v1")
|
458 |
+
if version == "v1":
|
459 |
+
if if_f0 == 1:
|
460 |
+
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
|
461 |
+
else:
|
462 |
+
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
|
463 |
+
elif version == "v2":
|
464 |
+
if if_f0 == 1:
|
465 |
+
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
|
466 |
+
else:
|
467 |
+
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
|
468 |
+
del net_g.enc_q
|
469 |
+
print(net_g.load_state_dict(cpt["weight"], strict=False))
|
470 |
+
net_g.eval().to(config.device)
|
471 |
+
if config.is_half:
|
472 |
+
net_g = net_g.half()
|
473 |
+
else:
|
474 |
+
net_g = net_g.float()
|
475 |
+
vc = VC(tgt_sr, config)
|
476 |
+
n_spk = cpt["config"][-3]
|
477 |
+
return {"visible": False, "maximum": n_spk, "__type__": "update"}
|
478 |
+
|
479 |
+
|
480 |
+
def change_choices():
|
481 |
+
names = []
|
482 |
+
for name in os.listdir(weight_root):
|
483 |
+
if name.endswith(".pth"):
|
484 |
+
names.append(name)
|
485 |
+
index_paths = []
|
486 |
+
for root, dirs, files in os.walk(index_root, topdown=False):
|
487 |
+
for name in files:
|
488 |
+
if name.endswith(".index") and "trained" not in name:
|
489 |
+
index_paths.append("%s/%s" % (root, name))
|
490 |
+
return {"choices": sorted(names), "__type__": "update"}, {
|
491 |
+
"choices": sorted(index_paths),
|
492 |
+
"__type__": "update",
|
493 |
+
}
|
494 |
+
|
495 |
+
|
496 |
+
def clean():
|
497 |
+
return {"value": "", "__type__": "update"}
|
498 |
+
|
499 |
+
|
500 |
+
sr_dict = {
|
501 |
+
"32k": 32000,
|
502 |
+
"40k": 40000,
|
503 |
+
"48k": 48000,
|
504 |
+
}
|
505 |
+
|
506 |
+
|
507 |
+
def if_done(done, p):
|
508 |
+
while 1:
|
509 |
+
if p.poll() == None:
|
510 |
+
sleep(0.5)
|
511 |
+
else:
|
512 |
+
break
|
513 |
+
done[0] = True
|
514 |
+
|
515 |
+
|
516 |
+
def if_done_multi(done, ps):
|
517 |
+
while 1:
|
518 |
+
# poll==None代表进程未结束
|
519 |
+
# 只要有一个进程未结束都不停
|
520 |
+
flag = 1
|
521 |
+
for p in ps:
|
522 |
+
if p.poll() == None:
|
523 |
+
flag = 0
|
524 |
+
sleep(0.5)
|
525 |
+
break
|
526 |
+
if flag == 1:
|
527 |
+
break
|
528 |
+
done[0] = True
|
529 |
+
|
530 |
+
|
531 |
+
|
532 |
+
global log_interval
|
533 |
+
|
534 |
+
|
535 |
+
def set_log_interval(exp_dir, batch_size12):
|
536 |
+
log_interval = 1
|
537 |
+
|
538 |
+
folder_path = os.path.join(exp_dir, "1_16k_wavs")
|
539 |
+
|
540 |
+
if os.path.exists(folder_path) and os.path.isdir(folder_path):
|
541 |
+
wav_files = [f for f in os.listdir(folder_path) if f.endswith(".wav")]
|
542 |
+
if wav_files:
|
543 |
+
sample_size = len(wav_files)
|
544 |
+
log_interval = math.ceil(sample_size / batch_size12)
|
545 |
+
if log_interval > 1:
|
546 |
+
log_interval += 1
|
547 |
+
return log_interval
|
548 |
+
|
549 |
+
|
550 |
+
|
551 |
+
|
552 |
+
|
553 |
+
def whethercrepeornah(radio):
|
554 |
+
mango = True if radio == 'mangio-crepe' or radio == 'mangio-crepe-tiny' else False
|
555 |
+
return ({"visible": mango, "__type__": "update"})
|
556 |
+
|