|
from transformers import CLIPProcessor, CLIPModel, ViTImageProcessor, ViTModel
|
|
from PIL import Image
|
|
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
|
from warnings import filterwarnings
|
|
filterwarnings("ignore")
|
|
|
|
models = ["CLIP-ViT Base", "ViT Base", "DINO ViT-S16"]
|
|
models_info = {
|
|
"CLIP-ViT Base": {
|
|
"model_size": "386MB",
|
|
"model_url": "openai/clip-vit-base-patch32",
|
|
"efficiency": "High",
|
|
},
|
|
"ViT Base": {
|
|
"model_size": "304MB",
|
|
"model_url": "google/vit-base-patch16-224",
|
|
"efficiency": "High",
|
|
},
|
|
"DINO ViT-S16": {
|
|
"model_size": "1.34GB",
|
|
"model_url": "facebook/dino-vits16",
|
|
"efficiency": "Moderate",
|
|
},
|
|
}
|
|
|
|
class Image_Validator:
|
|
def __init__(self, model_name=None):
|
|
if model_name is None: model_name="ViT Base"
|
|
|
|
self.model_info = models_info[model_name]
|
|
model_url = self.model_info["model_url"]
|
|
|
|
if model_name == "CLIP-ViT Base":
|
|
self.model = CLIPModel.from_pretrained(model_url)
|
|
self.processor = CLIPProcessor.from_pretrained(model_url)
|
|
|
|
elif model_name == "ViT Base":
|
|
self.model = ViTModel.from_pretrained(model_url)
|
|
self.feature_extractor = ViTImageProcessor.from_pretrained(model_url)
|
|
|
|
elif model_name == "DINO ViT-S16":
|
|
self.model = ViTModel.from_pretrained(model_url)
|
|
self.feature_extractor = ViTImageProcessor.from_pretrained(model_url)
|
|
|
|
def get_image_embedding(self, image_path):
|
|
image = Image.open(image_path)
|
|
|
|
|
|
if hasattr(self, 'processor'):
|
|
inputs = self.processor(images=image, return_tensors="pt")
|
|
outputs = self.model.get_image_features(**inputs)
|
|
|
|
elif hasattr(self, 'feature_extractor'):
|
|
inputs = self.feature_extractor(images=image, return_tensors="pt")
|
|
outputs = self.model(**inputs).last_hidden_state
|
|
|
|
return outputs
|
|
|
|
def similarity_score(self, image_path_1, image_path_2):
|
|
embedding1 = self.get_image_embedding(image_path_1).reshape(1, -1)
|
|
embedding2 = self.get_image_embedding(image_path_2).reshape(1, -1)
|
|
similarity = cosine_similarity(embedding1.detach().numpy(), embedding2.detach().numpy())
|
|
return similarity[0][0] |