tharu22's picture
change
e83c648
raw
history blame contribute delete
819 Bytes
from fastapi import FastAPI
from pydantic import BaseModel
from sentence_transformers import SentenceTransformer
import os
os.environ["HF_HOME"] = "/tmp/huggingface"
# Initialize FastAPI app
app = FastAPI()
# Load pretrained model from Hugging Face (instead of hf_hub_download)
model = SentenceTransformer("all-MiniLM-L6-v2") # Updated model
# Define request structure
class TextRequest(BaseModel):
text: str
# Define response structure
class EmbeddingResponse(BaseModel):
dimensions: int
embedding: list[float]
# Endpoint to get text embedding
@app.post("/get_embedding", response_model=EmbeddingResponse)
async def get_embedding(request: TextRequest):
embedding = model.encode([request.text])[0] # Generate embedding
return {"dimensions": len(embedding), "embedding": embedding.tolist()}