Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.  
							See raw diff
- .dockerignore +1 -0
 - .github/CODEOWNERS +1 -0
 - .github/ISSUE_TEMPLATE/bug_report.yml +107 -0
 - .github/ISSUE_TEMPLATE/config.yml +5 -0
 - .github/ISSUE_TEMPLATE/feature_request.yml +40 -0
 - .gitignore +54 -0
 - Dockerfile +29 -0
 - LICENSE +674 -0
 - args_manager.py +55 -0
 - auth-example.json +6 -0
 - build_launcher.py +26 -0
 - css/style.css +396 -0
 - docker-compose.yml +38 -0
 - docker.md +66 -0
 - entry_with_update.py +46 -0
 - entrypoint.sh +33 -0
 - environment.yaml +7 -0
 - experiments_expansion.py +8 -0
 - experiments_face.py +7 -0
 - experiments_interrogate.py +8 -0
 - extras/BLIP/configs/bert_config.json +21 -0
 - extras/BLIP/configs/caption_coco.yaml +33 -0
 - extras/BLIP/configs/med_config.json +21 -0
 - extras/BLIP/configs/nlvr.yaml +21 -0
 - extras/BLIP/configs/nocaps.yaml +15 -0
 - extras/BLIP/configs/pretrain.yaml +27 -0
 - extras/BLIP/configs/retrieval_coco.yaml +34 -0
 - extras/BLIP/configs/retrieval_flickr.yaml +34 -0
 - extras/BLIP/configs/retrieval_msrvtt.yaml +12 -0
 - extras/BLIP/configs/vqa.yaml +25 -0
 - extras/BLIP/models/bert_tokenizer/config.json +23 -0
 - extras/BLIP/models/bert_tokenizer/tokenizer.json +0 -0
 - extras/BLIP/models/bert_tokenizer/tokenizer_config.json +3 -0
 - extras/BLIP/models/bert_tokenizer/vocab.txt +0 -0
 - extras/BLIP/models/blip.py +239 -0
 - extras/BLIP/models/blip_itm.py +76 -0
 - extras/BLIP/models/blip_nlvr.py +105 -0
 - extras/BLIP/models/blip_pretrain.py +339 -0
 - extras/BLIP/models/blip_retrieval.py +319 -0
 - extras/BLIP/models/blip_vqa.py +186 -0
 - extras/BLIP/models/med.py +955 -0
 - extras/BLIP/models/nlvr_encoder.py +843 -0
 - extras/BLIP/models/vit.py +308 -0
 - extras/expansion.py +129 -0
 - extras/face_crop.py +50 -0
 - extras/facexlib/detection/__init__.py +31 -0
 - extras/facexlib/detection/align_trans.py +219 -0
 - extras/facexlib/detection/matlab_cp2tform.py +317 -0
 - extras/facexlib/detection/retinaface.py +366 -0
 - extras/facexlib/detection/retinaface_net.py +196 -0
 
    	
        .dockerignore
    ADDED
    
    | 
         @@ -0,0 +1 @@ 
     | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            .idea
         
     | 
    	
        .github/CODEOWNERS
    ADDED
    
    | 
         @@ -0,0 +1 @@ 
     | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            *       @lllyasviel
         
     | 
    	
        .github/ISSUE_TEMPLATE/bug_report.yml
    ADDED
    
    | 
         @@ -0,0 +1,107 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            name: Bug Report
         
     | 
| 2 | 
         
            +
            description: You think something is broken in Fooocus
         
     | 
| 3 | 
         
            +
            title: "[Bug]: "
         
     | 
| 4 | 
         
            +
            labels: ["bug", "triage"]
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            body:
         
     | 
| 7 | 
         
            +
              - type: markdown
         
     | 
| 8 | 
         
            +
                attributes:
         
     | 
| 9 | 
         
            +
                  value: |
         
     | 
| 10 | 
         
            +
                    > The title of the bug report should be short and descriptive.
         
     | 
| 11 | 
         
            +
                    > Use relevant keywords for searchability.
         
     | 
| 12 | 
         
            +
                    > Do not leave it blank, but also do not put an entire error log in it.
         
     | 
| 13 | 
         
            +
              - type: checkboxes
         
     | 
| 14 | 
         
            +
                attributes:
         
     | 
| 15 | 
         
            +
                  label: Checklist
         
     | 
| 16 | 
         
            +
                  description: |
         
     | 
| 17 | 
         
            +
                    Please perform basic debugging to see if your configuration is the cause of the issue.
         
     | 
| 18 | 
         
            +
                    Basic debug procedure
         
     | 
| 19 | 
         
            +
                     2. Update Fooocus - sometimes things just need to be updated
         
     | 
| 20 | 
         
            +
                     3. Backup and remove your config.txt - check if the issue is caused by bad configuration
         
     | 
| 21 | 
         
            +
                     5. Try a fresh installation of Fooocus in a different directory - see if a clean installation solves the issue
         
     | 
| 22 | 
         
            +
                    Before making a issue report please, check that the issue hasn't been reported recently.
         
     | 
| 23 | 
         
            +
                  options:
         
     | 
| 24 | 
         
            +
                    - label: The issue has not been resolved by following the [troubleshooting guide](https://github.com/lllyasviel/Fooocus/blob/main/troubleshoot.md)
         
     | 
| 25 | 
         
            +
                    - label: The issue exists on a clean installation of Fooocus
         
     | 
| 26 | 
         
            +
                    - label: The issue exists in the current version of Fooocus
         
     | 
| 27 | 
         
            +
                    - label: The issue has not been reported before recently
         
     | 
| 28 | 
         
            +
                    - label: The issue has been reported before but has not been fixed yet
         
     | 
| 29 | 
         
            +
              - type: markdown
         
     | 
| 30 | 
         
            +
                attributes:
         
     | 
| 31 | 
         
            +
                  value: |
         
     | 
| 32 | 
         
            +
                    > Please fill this form with as much information as possible. Don't forget to add information about "What browsers" and provide screenshots if possible
         
     | 
| 33 | 
         
            +
              - type: textarea
         
     | 
| 34 | 
         
            +
                id: what-did
         
     | 
| 35 | 
         
            +
                attributes:
         
     | 
| 36 | 
         
            +
                  label: What happened?
         
     | 
| 37 | 
         
            +
                  description: Tell us what happened in a very clear and simple way
         
     | 
| 38 | 
         
            +
                  placeholder: |
         
     | 
| 39 | 
         
            +
                    image generation is not working as intended.
         
     | 
| 40 | 
         
            +
                validations:
         
     | 
| 41 | 
         
            +
                  required: true
         
     | 
| 42 | 
         
            +
              - type: textarea
         
     | 
| 43 | 
         
            +
                id: steps
         
     | 
| 44 | 
         
            +
                attributes:
         
     | 
| 45 | 
         
            +
                  label: Steps to reproduce the problem
         
     | 
| 46 | 
         
            +
                  description: Please provide us with precise step by step instructions on how to reproduce the bug
         
     | 
| 47 | 
         
            +
                  placeholder: |
         
     | 
| 48 | 
         
            +
                    1. Go to ...
         
     | 
| 49 | 
         
            +
                    2. Press ...
         
     | 
| 50 | 
         
            +
                    3. ...
         
     | 
| 51 | 
         
            +
                validations:
         
     | 
| 52 | 
         
            +
                  required: true
         
     | 
| 53 | 
         
            +
              - type: textarea
         
     | 
| 54 | 
         
            +
                id: what-should
         
     | 
| 55 | 
         
            +
                attributes:
         
     | 
| 56 | 
         
            +
                  label: What should have happened?
         
     | 
| 57 | 
         
            +
                  description: Tell us what you think the normal behavior should be
         
     | 
| 58 | 
         
            +
                  placeholder: |
         
     | 
| 59 | 
         
            +
                    Fooocus should ...
         
     | 
| 60 | 
         
            +
                validations:
         
     | 
| 61 | 
         
            +
                  required: true
         
     | 
| 62 | 
         
            +
              - type: dropdown
         
     | 
| 63 | 
         
            +
                id: browsers
         
     | 
| 64 | 
         
            +
                attributes:
         
     | 
| 65 | 
         
            +
                  label: What browsers do you use to access Fooocus?
         
     | 
| 66 | 
         
            +
                  multiple: true
         
     | 
| 67 | 
         
            +
                  options:
         
     | 
| 68 | 
         
            +
                    - Mozilla Firefox
         
     | 
| 69 | 
         
            +
                    - Google Chrome
         
     | 
| 70 | 
         
            +
                    - Brave
         
     | 
| 71 | 
         
            +
                    - Apple Safari
         
     | 
| 72 | 
         
            +
                    - Microsoft Edge
         
     | 
| 73 | 
         
            +
                    - Android
         
     | 
| 74 | 
         
            +
                    - iOS
         
     | 
| 75 | 
         
            +
                    - Other
         
     | 
| 76 | 
         
            +
              - type: dropdown
         
     | 
| 77 | 
         
            +
                id: hosting
         
     | 
| 78 | 
         
            +
                attributes:
         
     | 
| 79 | 
         
            +
                  label: Where are you running Fooocus?
         
     | 
| 80 | 
         
            +
                  multiple: false
         
     | 
| 81 | 
         
            +
                  options:
         
     | 
| 82 | 
         
            +
                    - Locally
         
     | 
| 83 | 
         
            +
                    - Locally with virtualization (e.g. Docker)
         
     | 
| 84 | 
         
            +
                    - Cloud (Google Colab)
         
     | 
| 85 | 
         
            +
                    - Cloud (other)
         
     | 
| 86 | 
         
            +
              - type: input
         
     | 
| 87 | 
         
            +
                id: operating-system
         
     | 
| 88 | 
         
            +
                attributes:
         
     | 
| 89 | 
         
            +
                  label: What operating system are you using?
         
     | 
| 90 | 
         
            +
                  placeholder: |
         
     | 
| 91 | 
         
            +
                    Windows 10
         
     | 
| 92 | 
         
            +
              - type: textarea
         
     | 
| 93 | 
         
            +
                id: logs
         
     | 
| 94 | 
         
            +
                attributes:
         
     | 
| 95 | 
         
            +
                  label: Console logs
         
     | 
| 96 | 
         
            +
                  description: Please provide **full** cmd/terminal logs from the moment you started UI to the end of it, after the bug occured. If it's very long, provide a link to pastebin or similar service.
         
     | 
| 97 | 
         
            +
                  render: Shell
         
     | 
| 98 | 
         
            +
                validations:
         
     | 
| 99 | 
         
            +
                  required: true
         
     | 
| 100 | 
         
            +
              - type: textarea
         
     | 
| 101 | 
         
            +
                id: misc
         
     | 
| 102 | 
         
            +
                attributes:
         
     | 
| 103 | 
         
            +
                  label: Additional information
         
     | 
| 104 | 
         
            +
                  description: | 
         
     | 
| 105 | 
         
            +
                    Please provide us with any relevant additional info or context.
         
     | 
| 106 | 
         
            +
                    Examples:
         
     | 
| 107 | 
         
            +
                     I have updated my GPU driver recently.
         
     | 
    	
        .github/ISSUE_TEMPLATE/config.yml
    ADDED
    
    | 
         @@ -0,0 +1,5 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            blank_issues_enabled: false
         
     | 
| 2 | 
         
            +
            contact_links:
         
     | 
| 3 | 
         
            +
              - name: Ask a question
         
     | 
| 4 | 
         
            +
                url: https://github.com/lllyasviel/Fooocus/discussions/new?category=q-a
         
     | 
| 5 | 
         
            +
                about: Ask the community for help
         
     | 
    	
        .github/ISSUE_TEMPLATE/feature_request.yml
    ADDED
    
    | 
         @@ -0,0 +1,40 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            name: Feature request
         
     | 
| 2 | 
         
            +
            description: Suggest an idea for this project
         
     | 
| 3 | 
         
            +
            title: "[Feature Request]: "
         
     | 
| 4 | 
         
            +
            labels: ["enhancement", "triage"]
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            body:
         
     | 
| 7 | 
         
            +
              - type: checkboxes
         
     | 
| 8 | 
         
            +
                attributes:
         
     | 
| 9 | 
         
            +
                  label: Is there an existing issue for this?
         
     | 
| 10 | 
         
            +
                  description: Please search to see if an issue already exists for the feature you want, and that it's not implemented in a recent build/commit.
         
     | 
| 11 | 
         
            +
                  options:
         
     | 
| 12 | 
         
            +
                    - label: I have searched the existing issues and checked the recent builds/commits
         
     | 
| 13 | 
         
            +
                      required: true
         
     | 
| 14 | 
         
            +
              - type: markdown
         
     | 
| 15 | 
         
            +
                attributes:
         
     | 
| 16 | 
         
            +
                  value: |
         
     | 
| 17 | 
         
            +
                    *Please fill this form with as much information as possible, provide screenshots and/or illustrations of the feature if possible*
         
     | 
| 18 | 
         
            +
              - type: textarea
         
     | 
| 19 | 
         
            +
                id: feature
         
     | 
| 20 | 
         
            +
                attributes:
         
     | 
| 21 | 
         
            +
                  label: What would your feature do?
         
     | 
| 22 | 
         
            +
                  description: Tell us about your feature in a very clear and simple way, and what problem it would solve
         
     | 
| 23 | 
         
            +
                validations:
         
     | 
| 24 | 
         
            +
                  required: true
         
     | 
| 25 | 
         
            +
              - type: textarea
         
     | 
| 26 | 
         
            +
                id: workflow
         
     | 
| 27 | 
         
            +
                attributes:
         
     | 
| 28 | 
         
            +
                  label: Proposed workflow
         
     | 
| 29 | 
         
            +
                  description: Please provide us with step by step information on how you'd like the feature to be accessed and used
         
     | 
| 30 | 
         
            +
                  value: |
         
     | 
| 31 | 
         
            +
                    1. Go to .... 
         
     | 
| 32 | 
         
            +
                    2. Press ....
         
     | 
| 33 | 
         
            +
                    3. ...
         
     | 
| 34 | 
         
            +
                validations:
         
     | 
| 35 | 
         
            +
                  required: true
         
     | 
| 36 | 
         
            +
              - type: textarea
         
     | 
| 37 | 
         
            +
                id: misc
         
     | 
| 38 | 
         
            +
                attributes:
         
     | 
| 39 | 
         
            +
                  label: Additional information
         
     | 
| 40 | 
         
            +
                  description: Add any other context or screenshots about the feature request here.
         
     | 
    	
        .gitignore
    ADDED
    
    | 
         @@ -0,0 +1,54 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            __pycache__
         
     | 
| 2 | 
         
            +
            *.ckpt
         
     | 
| 3 | 
         
            +
            *.safetensors
         
     | 
| 4 | 
         
            +
            *.pth
         
     | 
| 5 | 
         
            +
            *.pt
         
     | 
| 6 | 
         
            +
            *.bin
         
     | 
| 7 | 
         
            +
            *.patch
         
     | 
| 8 | 
         
            +
            *.backup
         
     | 
| 9 | 
         
            +
            *.corrupted
         
     | 
| 10 | 
         
            +
            *.partial
         
     | 
| 11 | 
         
            +
            *.onnx
         
     | 
| 12 | 
         
            +
            sorted_styles.json
         
     | 
| 13 | 
         
            +
            /input
         
     | 
| 14 | 
         
            +
            /cache
         
     | 
| 15 | 
         
            +
            /language/default.json
         
     | 
| 16 | 
         
            +
            /test_imgs
         
     | 
| 17 | 
         
            +
            config.txt
         
     | 
| 18 | 
         
            +
            config_modification_tutorial.txt
         
     | 
| 19 | 
         
            +
            user_path_config.txt
         
     | 
| 20 | 
         
            +
            user_path_config-deprecated.txt
         
     | 
| 21 | 
         
            +
            /modules/*.png
         
     | 
| 22 | 
         
            +
            /repositories
         
     | 
| 23 | 
         
            +
            /fooocus_env
         
     | 
| 24 | 
         
            +
            /venv
         
     | 
| 25 | 
         
            +
            /tmp
         
     | 
| 26 | 
         
            +
            /ui-config.json
         
     | 
| 27 | 
         
            +
            /outputs
         
     | 
| 28 | 
         
            +
            /config.json
         
     | 
| 29 | 
         
            +
            /log
         
     | 
| 30 | 
         
            +
            /webui.settings.bat
         
     | 
| 31 | 
         
            +
            /embeddings
         
     | 
| 32 | 
         
            +
            /styles.csv
         
     | 
| 33 | 
         
            +
            /params.txt
         
     | 
| 34 | 
         
            +
            /styles.csv.bak
         
     | 
| 35 | 
         
            +
            /webui-user.bat
         
     | 
| 36 | 
         
            +
            /webui-user.sh
         
     | 
| 37 | 
         
            +
            /interrogate
         
     | 
| 38 | 
         
            +
            /user.css
         
     | 
| 39 | 
         
            +
            /.idea
         
     | 
| 40 | 
         
            +
            /notification.ogg
         
     | 
| 41 | 
         
            +
            /notification.mp3
         
     | 
| 42 | 
         
            +
            /SwinIR
         
     | 
| 43 | 
         
            +
            /textual_inversion
         
     | 
| 44 | 
         
            +
            .vscode
         
     | 
| 45 | 
         
            +
            /extensions
         
     | 
| 46 | 
         
            +
            /test/stdout.txt
         
     | 
| 47 | 
         
            +
            /test/stderr.txt
         
     | 
| 48 | 
         
            +
            /cache.json*
         
     | 
| 49 | 
         
            +
            /config_states/
         
     | 
| 50 | 
         
            +
            /node_modules
         
     | 
| 51 | 
         
            +
            /package-lock.json
         
     | 
| 52 | 
         
            +
            /.coverage*
         
     | 
| 53 | 
         
            +
            /auth.json
         
     | 
| 54 | 
         
            +
            .DS_Store
         
     | 
    	
        Dockerfile
    ADDED
    
    | 
         @@ -0,0 +1,29 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            FROM nvidia/cuda:12.3.1-base-ubuntu22.04
         
     | 
| 2 | 
         
            +
            ENV DEBIAN_FRONTEND noninteractive
         
     | 
| 3 | 
         
            +
            ENV CMDARGS --listen
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            RUN apt-get update -y && \
         
     | 
| 6 | 
         
            +
            	apt-get install -y curl libgl1 libglib2.0-0 python3-pip python-is-python3 git && \
         
     | 
| 7 | 
         
            +
            	apt-get clean && \
         
     | 
| 8 | 
         
            +
            	rm -rf /var/lib/apt/lists/*
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            COPY requirements_docker.txt requirements_versions.txt /tmp/
         
     | 
| 11 | 
         
            +
            RUN pip install --no-cache-dir -r /tmp/requirements_docker.txt -r /tmp/requirements_versions.txt && \
         
     | 
| 12 | 
         
            +
            	rm -f /tmp/requirements_docker.txt /tmp/requirements_versions.txt
         
     | 
| 13 | 
         
            +
            RUN pip install --no-cache-dir xformers==0.0.23 --no-dependencies
         
     | 
| 14 | 
         
            +
            RUN curl -fsL -o /usr/local/lib/python3.10/dist-packages/gradio/frpc_linux_amd64_v0.2 https://cdn-media.huggingface.co/frpc-gradio-0.2/frpc_linux_amd64 && \
         
     | 
| 15 | 
         
            +
            	chmod +x /usr/local/lib/python3.10/dist-packages/gradio/frpc_linux_amd64_v0.2
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            RUN adduser --disabled-password --gecos '' user && \
         
     | 
| 18 | 
         
            +
            	mkdir -p /content/app /content/data
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            COPY entrypoint.sh /content/
         
     | 
| 21 | 
         
            +
            RUN chown -R user:user /content
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
            WORKDIR /content
         
     | 
| 24 | 
         
            +
            USER user
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
            RUN git clone https://github.com/lllyasviel/Fooocus /content/app
         
     | 
| 27 | 
         
            +
            RUN mv /content/app/models /content/app/models.org
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
            CMD [ "sh", "-c", "/content/entrypoint.sh ${CMDARGS}" ]
         
     | 
    	
        LICENSE
    ADDED
    
    | 
         @@ -0,0 +1,674 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
                                GNU GENERAL PUBLIC LICENSE
         
     | 
| 2 | 
         
            +
                                   Version 3, 29 June 2007
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
             Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
         
     | 
| 5 | 
         
            +
             Everyone is permitted to copy and distribute verbatim copies
         
     | 
| 6 | 
         
            +
             of this license document, but changing it is not allowed.
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
                                        Preamble
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
              The GNU General Public License is a free, copyleft license for
         
     | 
| 11 | 
         
            +
            software and other kinds of works.
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
              The licenses for most software and other practical works are designed
         
     | 
| 14 | 
         
            +
            to take away your freedom to share and change the works.  By contrast,
         
     | 
| 15 | 
         
            +
            the GNU General Public License is intended to guarantee your freedom to
         
     | 
| 16 | 
         
            +
            share and change all versions of a program--to make sure it remains free
         
     | 
| 17 | 
         
            +
            software for all its users.  We, the Free Software Foundation, use the
         
     | 
| 18 | 
         
            +
            GNU General Public License for most of our software; it applies also to
         
     | 
| 19 | 
         
            +
            any other work released this way by its authors.  You can apply it to
         
     | 
| 20 | 
         
            +
            your programs, too.
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
              When we speak of free software, we are referring to freedom, not
         
     | 
| 23 | 
         
            +
            price.  Our General Public Licenses are designed to make sure that you
         
     | 
| 24 | 
         
            +
            have the freedom to distribute copies of free software (and charge for
         
     | 
| 25 | 
         
            +
            them if you wish), that you receive source code or can get it if you
         
     | 
| 26 | 
         
            +
            want it, that you can change the software or use pieces of it in new
         
     | 
| 27 | 
         
            +
            free programs, and that you know you can do these things.
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
              To protect your rights, we need to prevent others from denying you
         
     | 
| 30 | 
         
            +
            these rights or asking you to surrender the rights.  Therefore, you have
         
     | 
| 31 | 
         
            +
            certain responsibilities if you distribute copies of the software, or if
         
     | 
| 32 | 
         
            +
            you modify it: responsibilities to respect the freedom of others.
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
              For example, if you distribute copies of such a program, whether
         
     | 
| 35 | 
         
            +
            gratis or for a fee, you must pass on to the recipients the same
         
     | 
| 36 | 
         
            +
            freedoms that you received.  You must make sure that they, too, receive
         
     | 
| 37 | 
         
            +
            or can get the source code.  And you must show them these terms so they
         
     | 
| 38 | 
         
            +
            know their rights.
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
              Developers that use the GNU GPL protect your rights with two steps:
         
     | 
| 41 | 
         
            +
            (1) assert copyright on the software, and (2) offer you this License
         
     | 
| 42 | 
         
            +
            giving you legal permission to copy, distribute and/or modify it.
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
              For the developers' and authors' protection, the GPL clearly explains
         
     | 
| 45 | 
         
            +
            that there is no warranty for this free software.  For both users' and
         
     | 
| 46 | 
         
            +
            authors' sake, the GPL requires that modified versions be marked as
         
     | 
| 47 | 
         
            +
            changed, so that their problems will not be attributed erroneously to
         
     | 
| 48 | 
         
            +
            authors of previous versions.
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
              Some devices are designed to deny users access to install or run
         
     | 
| 51 | 
         
            +
            modified versions of the software inside them, although the manufacturer
         
     | 
| 52 | 
         
            +
            can do so.  This is fundamentally incompatible with the aim of
         
     | 
| 53 | 
         
            +
            protecting users' freedom to change the software.  The systematic
         
     | 
| 54 | 
         
            +
            pattern of such abuse occurs in the area of products for individuals to
         
     | 
| 55 | 
         
            +
            use, which is precisely where it is most unacceptable.  Therefore, we
         
     | 
| 56 | 
         
            +
            have designed this version of the GPL to prohibit the practice for those
         
     | 
| 57 | 
         
            +
            products.  If such problems arise substantially in other domains, we
         
     | 
| 58 | 
         
            +
            stand ready to extend this provision to those domains in future versions
         
     | 
| 59 | 
         
            +
            of the GPL, as needed to protect the freedom of users.
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
              Finally, every program is threatened constantly by software patents.
         
     | 
| 62 | 
         
            +
            States should not allow patents to restrict development and use of
         
     | 
| 63 | 
         
            +
            software on general-purpose computers, but in those that do, we wish to
         
     | 
| 64 | 
         
            +
            avoid the special danger that patents applied to a free program could
         
     | 
| 65 | 
         
            +
            make it effectively proprietary.  To prevent this, the GPL assures that
         
     | 
| 66 | 
         
            +
            patents cannot be used to render the program non-free.
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
              The precise terms and conditions for copying, distribution and
         
     | 
| 69 | 
         
            +
            modification follow.
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
                                   TERMS AND CONDITIONS
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
              0. Definitions.
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
              "This License" refers to version 3 of the GNU General Public License.
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
              "Copyright" also means copyright-like laws that apply to other kinds of
         
     | 
| 78 | 
         
            +
            works, such as semiconductor masks.
         
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
              "The Program" refers to any copyrightable work licensed under this
         
     | 
| 81 | 
         
            +
            License.  Each licensee is addressed as "you".  "Licensees" and
         
     | 
| 82 | 
         
            +
            "recipients" may be individuals or organizations.
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
              To "modify" a work means to copy from or adapt all or part of the work
         
     | 
| 85 | 
         
            +
            in a fashion requiring copyright permission, other than the making of an
         
     | 
| 86 | 
         
            +
            exact copy.  The resulting work is called a "modified version" of the
         
     | 
| 87 | 
         
            +
            earlier work or a work "based on" the earlier work.
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
              A "covered work" means either the unmodified Program or a work based
         
     | 
| 90 | 
         
            +
            on the Program.
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
              To "propagate" a work means to do anything with it that, without
         
     | 
| 93 | 
         
            +
            permission, would make you directly or secondarily liable for
         
     | 
| 94 | 
         
            +
            infringement under applicable copyright law, except executing it on a
         
     | 
| 95 | 
         
            +
            computer or modifying a private copy.  Propagation includes copying,
         
     | 
| 96 | 
         
            +
            distribution (with or without modification), making available to the
         
     | 
| 97 | 
         
            +
            public, and in some countries other activities as well.
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
              To "convey" a work means any kind of propagation that enables other
         
     | 
| 100 | 
         
            +
            parties to make or receive copies.  Mere interaction with a user through
         
     | 
| 101 | 
         
            +
            a computer network, with no transfer of a copy, is not conveying.
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
              An interactive user interface displays "Appropriate Legal Notices"
         
     | 
| 104 | 
         
            +
            to the extent that it includes a convenient and prominently visible
         
     | 
| 105 | 
         
            +
            feature that (1) displays an appropriate copyright notice, and (2)
         
     | 
| 106 | 
         
            +
            tells the user that there is no warranty for the work (except to the
         
     | 
| 107 | 
         
            +
            extent that warranties are provided), that licensees may convey the
         
     | 
| 108 | 
         
            +
            work under this License, and how to view a copy of this License.  If
         
     | 
| 109 | 
         
            +
            the interface presents a list of user commands or options, such as a
         
     | 
| 110 | 
         
            +
            menu, a prominent item in the list meets this criterion.
         
     | 
| 111 | 
         
            +
             
     | 
| 112 | 
         
            +
              1. Source Code.
         
     | 
| 113 | 
         
            +
             
     | 
| 114 | 
         
            +
              The "source code" for a work means the preferred form of the work
         
     | 
| 115 | 
         
            +
            for making modifications to it.  "Object code" means any non-source
         
     | 
| 116 | 
         
            +
            form of a work.
         
     | 
| 117 | 
         
            +
             
     | 
| 118 | 
         
            +
              A "Standard Interface" means an interface that either is an official
         
     | 
| 119 | 
         
            +
            standard defined by a recognized standards body, or, in the case of
         
     | 
| 120 | 
         
            +
            interfaces specified for a particular programming language, one that
         
     | 
| 121 | 
         
            +
            is widely used among developers working in that language.
         
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
              The "System Libraries" of an executable work include anything, other
         
     | 
| 124 | 
         
            +
            than the work as a whole, that (a) is included in the normal form of
         
     | 
| 125 | 
         
            +
            packaging a Major Component, but which is not part of that Major
         
     | 
| 126 | 
         
            +
            Component, and (b) serves only to enable use of the work with that
         
     | 
| 127 | 
         
            +
            Major Component, or to implement a Standard Interface for which an
         
     | 
| 128 | 
         
            +
            implementation is available to the public in source code form.  A
         
     | 
| 129 | 
         
            +
            "Major Component", in this context, means a major essential component
         
     | 
| 130 | 
         
            +
            (kernel, window system, and so on) of the specific operating system
         
     | 
| 131 | 
         
            +
            (if any) on which the executable work runs, or a compiler used to
         
     | 
| 132 | 
         
            +
            produce the work, or an object code interpreter used to run it.
         
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
              The "Corresponding Source" for a work in object code form means all
         
     | 
| 135 | 
         
            +
            the source code needed to generate, install, and (for an executable
         
     | 
| 136 | 
         
            +
            work) run the object code and to modify the work, including scripts to
         
     | 
| 137 | 
         
            +
            control those activities.  However, it does not include the work's
         
     | 
| 138 | 
         
            +
            System Libraries, or general-purpose tools or generally available free
         
     | 
| 139 | 
         
            +
            programs which are used unmodified in performing those activities but
         
     | 
| 140 | 
         
            +
            which are not part of the work.  For example, Corresponding Source
         
     | 
| 141 | 
         
            +
            includes interface definition files associated with source files for
         
     | 
| 142 | 
         
            +
            the work, and the source code for shared libraries and dynamically
         
     | 
| 143 | 
         
            +
            linked subprograms that the work is specifically designed to require,
         
     | 
| 144 | 
         
            +
            such as by intimate data communication or control flow between those
         
     | 
| 145 | 
         
            +
            subprograms and other parts of the work.
         
     | 
| 146 | 
         
            +
             
     | 
| 147 | 
         
            +
              The Corresponding Source need not include anything that users
         
     | 
| 148 | 
         
            +
            can regenerate automatically from other parts of the Corresponding
         
     | 
| 149 | 
         
            +
            Source.
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
              The Corresponding Source for a work in source code form is that
         
     | 
| 152 | 
         
            +
            same work.
         
     | 
| 153 | 
         
            +
             
     | 
| 154 | 
         
            +
              2. Basic Permissions.
         
     | 
| 155 | 
         
            +
             
     | 
| 156 | 
         
            +
              All rights granted under this License are granted for the term of
         
     | 
| 157 | 
         
            +
            copyright on the Program, and are irrevocable provided the stated
         
     | 
| 158 | 
         
            +
            conditions are met.  This License explicitly affirms your unlimited
         
     | 
| 159 | 
         
            +
            permission to run the unmodified Program.  The output from running a
         
     | 
| 160 | 
         
            +
            covered work is covered by this License only if the output, given its
         
     | 
| 161 | 
         
            +
            content, constitutes a covered work.  This License acknowledges your
         
     | 
| 162 | 
         
            +
            rights of fair use or other equivalent, as provided by copyright law.
         
     | 
| 163 | 
         
            +
             
     | 
| 164 | 
         
            +
              You may make, run and propagate covered works that you do not
         
     | 
| 165 | 
         
            +
            convey, without conditions so long as your license otherwise remains
         
     | 
| 166 | 
         
            +
            in force.  You may convey covered works to others for the sole purpose
         
     | 
| 167 | 
         
            +
            of having them make modifications exclusively for you, or provide you
         
     | 
| 168 | 
         
            +
            with facilities for running those works, provided that you comply with
         
     | 
| 169 | 
         
            +
            the terms of this License in conveying all material for which you do
         
     | 
| 170 | 
         
            +
            not control copyright.  Those thus making or running the covered works
         
     | 
| 171 | 
         
            +
            for you must do so exclusively on your behalf, under your direction
         
     | 
| 172 | 
         
            +
            and control, on terms that prohibit them from making any copies of
         
     | 
| 173 | 
         
            +
            your copyrighted material outside their relationship with you.
         
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
              Conveying under any other circumstances is permitted solely under
         
     | 
| 176 | 
         
            +
            the conditions stated below.  Sublicensing is not allowed; section 10
         
     | 
| 177 | 
         
            +
            makes it unnecessary.
         
     | 
| 178 | 
         
            +
             
     | 
| 179 | 
         
            +
              3. Protecting Users' Legal Rights From Anti-Circumvention Law.
         
     | 
| 180 | 
         
            +
             
     | 
| 181 | 
         
            +
              No covered work shall be deemed part of an effective technological
         
     | 
| 182 | 
         
            +
            measure under any applicable law fulfilling obligations under article
         
     | 
| 183 | 
         
            +
            11 of the WIPO copyright treaty adopted on 20 December 1996, or
         
     | 
| 184 | 
         
            +
            similar laws prohibiting or restricting circumvention of such
         
     | 
| 185 | 
         
            +
            measures.
         
     | 
| 186 | 
         
            +
             
     | 
| 187 | 
         
            +
              When you convey a covered work, you waive any legal power to forbid
         
     | 
| 188 | 
         
            +
            circumvention of technological measures to the extent such circumvention
         
     | 
| 189 | 
         
            +
            is effected by exercising rights under this License with respect to
         
     | 
| 190 | 
         
            +
            the covered work, and you disclaim any intention to limit operation or
         
     | 
| 191 | 
         
            +
            modification of the work as a means of enforcing, against the work's
         
     | 
| 192 | 
         
            +
            users, your or third parties' legal rights to forbid circumvention of
         
     | 
| 193 | 
         
            +
            technological measures.
         
     | 
| 194 | 
         
            +
             
     | 
| 195 | 
         
            +
              4. Conveying Verbatim Copies.
         
     | 
| 196 | 
         
            +
             
     | 
| 197 | 
         
            +
              You may convey verbatim copies of the Program's source code as you
         
     | 
| 198 | 
         
            +
            receive it, in any medium, provided that you conspicuously and
         
     | 
| 199 | 
         
            +
            appropriately publish on each copy an appropriate copyright notice;
         
     | 
| 200 | 
         
            +
            keep intact all notices stating that this License and any
         
     | 
| 201 | 
         
            +
            non-permissive terms added in accord with section 7 apply to the code;
         
     | 
| 202 | 
         
            +
            keep intact all notices of the absence of any warranty; and give all
         
     | 
| 203 | 
         
            +
            recipients a copy of this License along with the Program.
         
     | 
| 204 | 
         
            +
             
     | 
| 205 | 
         
            +
              You may charge any price or no price for each copy that you convey,
         
     | 
| 206 | 
         
            +
            and you may offer support or warranty protection for a fee.
         
     | 
| 207 | 
         
            +
             
     | 
| 208 | 
         
            +
              5. Conveying Modified Source Versions.
         
     | 
| 209 | 
         
            +
             
     | 
| 210 | 
         
            +
              You may convey a work based on the Program, or the modifications to
         
     | 
| 211 | 
         
            +
            produce it from the Program, in the form of source code under the
         
     | 
| 212 | 
         
            +
            terms of section 4, provided that you also meet all of these conditions:
         
     | 
| 213 | 
         
            +
             
     | 
| 214 | 
         
            +
                a) The work must carry prominent notices stating that you modified
         
     | 
| 215 | 
         
            +
                it, and giving a relevant date.
         
     | 
| 216 | 
         
            +
             
     | 
| 217 | 
         
            +
                b) The work must carry prominent notices stating that it is
         
     | 
| 218 | 
         
            +
                released under this License and any conditions added under section
         
     | 
| 219 | 
         
            +
                7.  This requirement modifies the requirement in section 4 to
         
     | 
| 220 | 
         
            +
                "keep intact all notices".
         
     | 
| 221 | 
         
            +
             
     | 
| 222 | 
         
            +
                c) You must license the entire work, as a whole, under this
         
     | 
| 223 | 
         
            +
                License to anyone who comes into possession of a copy.  This
         
     | 
| 224 | 
         
            +
                License will therefore apply, along with any applicable section 7
         
     | 
| 225 | 
         
            +
                additional terms, to the whole of the work, and all its parts,
         
     | 
| 226 | 
         
            +
                regardless of how they are packaged.  This License gives no
         
     | 
| 227 | 
         
            +
                permission to license the work in any other way, but it does not
         
     | 
| 228 | 
         
            +
                invalidate such permission if you have separately received it.
         
     | 
| 229 | 
         
            +
             
     | 
| 230 | 
         
            +
                d) If the work has interactive user interfaces, each must display
         
     | 
| 231 | 
         
            +
                Appropriate Legal Notices; however, if the Program has interactive
         
     | 
| 232 | 
         
            +
                interfaces that do not display Appropriate Legal Notices, your
         
     | 
| 233 | 
         
            +
                work need not make them do so.
         
     | 
| 234 | 
         
            +
             
     | 
| 235 | 
         
            +
              A compilation of a covered work with other separate and independent
         
     | 
| 236 | 
         
            +
            works, which are not by their nature extensions of the covered work,
         
     | 
| 237 | 
         
            +
            and which are not combined with it such as to form a larger program,
         
     | 
| 238 | 
         
            +
            in or on a volume of a storage or distribution medium, is called an
         
     | 
| 239 | 
         
            +
            "aggregate" if the compilation and its resulting copyright are not
         
     | 
| 240 | 
         
            +
            used to limit the access or legal rights of the compilation's users
         
     | 
| 241 | 
         
            +
            beyond what the individual works permit.  Inclusion of a covered work
         
     | 
| 242 | 
         
            +
            in an aggregate does not cause this License to apply to the other
         
     | 
| 243 | 
         
            +
            parts of the aggregate.
         
     | 
| 244 | 
         
            +
             
     | 
| 245 | 
         
            +
              6. Conveying Non-Source Forms.
         
     | 
| 246 | 
         
            +
             
     | 
| 247 | 
         
            +
              You may convey a covered work in object code form under the terms
         
     | 
| 248 | 
         
            +
            of sections 4 and 5, provided that you also convey the
         
     | 
| 249 | 
         
            +
            machine-readable Corresponding Source under the terms of this License,
         
     | 
| 250 | 
         
            +
            in one of these ways:
         
     | 
| 251 | 
         
            +
             
     | 
| 252 | 
         
            +
                a) Convey the object code in, or embodied in, a physical product
         
     | 
| 253 | 
         
            +
                (including a physical distribution medium), accompanied by the
         
     | 
| 254 | 
         
            +
                Corresponding Source fixed on a durable physical medium
         
     | 
| 255 | 
         
            +
                customarily used for software interchange.
         
     | 
| 256 | 
         
            +
             
     | 
| 257 | 
         
            +
                b) Convey the object code in, or embodied in, a physical product
         
     | 
| 258 | 
         
            +
                (including a physical distribution medium), accompanied by a
         
     | 
| 259 | 
         
            +
                written offer, valid for at least three years and valid for as
         
     | 
| 260 | 
         
            +
                long as you offer spare parts or customer support for that product
         
     | 
| 261 | 
         
            +
                model, to give anyone who possesses the object code either (1) a
         
     | 
| 262 | 
         
            +
                copy of the Corresponding Source for all the software in the
         
     | 
| 263 | 
         
            +
                product that is covered by this License, on a durable physical
         
     | 
| 264 | 
         
            +
                medium customarily used for software interchange, for a price no
         
     | 
| 265 | 
         
            +
                more than your reasonable cost of physically performing this
         
     | 
| 266 | 
         
            +
                conveying of source, or (2) access to copy the
         
     | 
| 267 | 
         
            +
                Corresponding Source from a network server at no charge.
         
     | 
| 268 | 
         
            +
             
     | 
| 269 | 
         
            +
                c) Convey individual copies of the object code with a copy of the
         
     | 
| 270 | 
         
            +
                written offer to provide the Corresponding Source.  This
         
     | 
| 271 | 
         
            +
                alternative is allowed only occasionally and noncommercially, and
         
     | 
| 272 | 
         
            +
                only if you received the object code with such an offer, in accord
         
     | 
| 273 | 
         
            +
                with subsection 6b.
         
     | 
| 274 | 
         
            +
             
     | 
| 275 | 
         
            +
                d) Convey the object code by offering access from a designated
         
     | 
| 276 | 
         
            +
                place (gratis or for a charge), and offer equivalent access to the
         
     | 
| 277 | 
         
            +
                Corresponding Source in the same way through the same place at no
         
     | 
| 278 | 
         
            +
                further charge.  You need not require recipients to copy the
         
     | 
| 279 | 
         
            +
                Corresponding Source along with the object code.  If the place to
         
     | 
| 280 | 
         
            +
                copy the object code is a network server, the Corresponding Source
         
     | 
| 281 | 
         
            +
                may be on a different server (operated by you or a third party)
         
     | 
| 282 | 
         
            +
                that supports equivalent copying facilities, provided you maintain
         
     | 
| 283 | 
         
            +
                clear directions next to the object code saying where to find the
         
     | 
| 284 | 
         
            +
                Corresponding Source.  Regardless of what server hosts the
         
     | 
| 285 | 
         
            +
                Corresponding Source, you remain obligated to ensure that it is
         
     | 
| 286 | 
         
            +
                available for as long as needed to satisfy these requirements.
         
     | 
| 287 | 
         
            +
             
     | 
| 288 | 
         
            +
                e) Convey the object code using peer-to-peer transmission, provided
         
     | 
| 289 | 
         
            +
                you inform other peers where the object code and Corresponding
         
     | 
| 290 | 
         
            +
                Source of the work are being offered to the general public at no
         
     | 
| 291 | 
         
            +
                charge under subsection 6d.
         
     | 
| 292 | 
         
            +
             
     | 
| 293 | 
         
            +
              A separable portion of the object code, whose source code is excluded
         
     | 
| 294 | 
         
            +
            from the Corresponding Source as a System Library, need not be
         
     | 
| 295 | 
         
            +
            included in conveying the object code work.
         
     | 
| 296 | 
         
            +
             
     | 
| 297 | 
         
            +
              A "User Product" is either (1) a "consumer product", which means any
         
     | 
| 298 | 
         
            +
            tangible personal property which is normally used for personal, family,
         
     | 
| 299 | 
         
            +
            or household purposes, or (2) anything designed or sold for incorporation
         
     | 
| 300 | 
         
            +
            into a dwelling.  In determining whether a product is a consumer product,
         
     | 
| 301 | 
         
            +
            doubtful cases shall be resolved in favor of coverage.  For a particular
         
     | 
| 302 | 
         
            +
            product received by a particular user, "normally used" refers to a
         
     | 
| 303 | 
         
            +
            typical or common use of that class of product, regardless of the status
         
     | 
| 304 | 
         
            +
            of the particular user or of the way in which the particular user
         
     | 
| 305 | 
         
            +
            actually uses, or expects or is expected to use, the product.  A product
         
     | 
| 306 | 
         
            +
            is a consumer product regardless of whether the product has substantial
         
     | 
| 307 | 
         
            +
            commercial, industrial or non-consumer uses, unless such uses represent
         
     | 
| 308 | 
         
            +
            the only significant mode of use of the product.
         
     | 
| 309 | 
         
            +
             
     | 
| 310 | 
         
            +
              "Installation Information" for a User Product means any methods,
         
     | 
| 311 | 
         
            +
            procedures, authorization keys, or other information required to install
         
     | 
| 312 | 
         
            +
            and execute modified versions of a covered work in that User Product from
         
     | 
| 313 | 
         
            +
            a modified version of its Corresponding Source.  The information must
         
     | 
| 314 | 
         
            +
            suffice to ensure that the continued functioning of the modified object
         
     | 
| 315 | 
         
            +
            code is in no case prevented or interfered with solely because
         
     | 
| 316 | 
         
            +
            modification has been made.
         
     | 
| 317 | 
         
            +
             
     | 
| 318 | 
         
            +
              If you convey an object code work under this section in, or with, or
         
     | 
| 319 | 
         
            +
            specifically for use in, a User Product, and the conveying occurs as
         
     | 
| 320 | 
         
            +
            part of a transaction in which the right of possession and use of the
         
     | 
| 321 | 
         
            +
            User Product is transferred to the recipient in perpetuity or for a
         
     | 
| 322 | 
         
            +
            fixed term (regardless of how the transaction is characterized), the
         
     | 
| 323 | 
         
            +
            Corresponding Source conveyed under this section must be accompanied
         
     | 
| 324 | 
         
            +
            by the Installation Information.  But this requirement does not apply
         
     | 
| 325 | 
         
            +
            if neither you nor any third party retains the ability to install
         
     | 
| 326 | 
         
            +
            modified object code on the User Product (for example, the work has
         
     | 
| 327 | 
         
            +
            been installed in ROM).
         
     | 
| 328 | 
         
            +
             
     | 
| 329 | 
         
            +
              The requirement to provide Installation Information does not include a
         
     | 
| 330 | 
         
            +
            requirement to continue to provide support service, warranty, or updates
         
     | 
| 331 | 
         
            +
            for a work that has been modified or installed by the recipient, or for
         
     | 
| 332 | 
         
            +
            the User Product in which it has been modified or installed.  Access to a
         
     | 
| 333 | 
         
            +
            network may be denied when the modification itself materially and
         
     | 
| 334 | 
         
            +
            adversely affects the operation of the network or violates the rules and
         
     | 
| 335 | 
         
            +
            protocols for communication across the network.
         
     | 
| 336 | 
         
            +
             
     | 
| 337 | 
         
            +
              Corresponding Source conveyed, and Installation Information provided,
         
     | 
| 338 | 
         
            +
            in accord with this section must be in a format that is publicly
         
     | 
| 339 | 
         
            +
            documented (and with an implementation available to the public in
         
     | 
| 340 | 
         
            +
            source code form), and must require no special password or key for
         
     | 
| 341 | 
         
            +
            unpacking, reading or copying.
         
     | 
| 342 | 
         
            +
             
     | 
| 343 | 
         
            +
              7. Additional Terms.
         
     | 
| 344 | 
         
            +
             
     | 
| 345 | 
         
            +
              "Additional permissions" are terms that supplement the terms of this
         
     | 
| 346 | 
         
            +
            License by making exceptions from one or more of its conditions.
         
     | 
| 347 | 
         
            +
            Additional permissions that are applicable to the entire Program shall
         
     | 
| 348 | 
         
            +
            be treated as though they were included in this License, to the extent
         
     | 
| 349 | 
         
            +
            that they are valid under applicable law.  If additional permissions
         
     | 
| 350 | 
         
            +
            apply only to part of the Program, that part may be used separately
         
     | 
| 351 | 
         
            +
            under those permissions, but the entire Program remains governed by
         
     | 
| 352 | 
         
            +
            this License without regard to the additional permissions.
         
     | 
| 353 | 
         
            +
             
     | 
| 354 | 
         
            +
              When you convey a copy of a covered work, you may at your option
         
     | 
| 355 | 
         
            +
            remove any additional permissions from that copy, or from any part of
         
     | 
| 356 | 
         
            +
            it.  (Additional permissions may be written to require their own
         
     | 
| 357 | 
         
            +
            removal in certain cases when you modify the work.)  You may place
         
     | 
| 358 | 
         
            +
            additional permissions on material, added by you to a covered work,
         
     | 
| 359 | 
         
            +
            for which you have or can give appropriate copyright permission.
         
     | 
| 360 | 
         
            +
             
     | 
| 361 | 
         
            +
              Notwithstanding any other provision of this License, for material you
         
     | 
| 362 | 
         
            +
            add to a covered work, you may (if authorized by the copyright holders of
         
     | 
| 363 | 
         
            +
            that material) supplement the terms of this License with terms:
         
     | 
| 364 | 
         
            +
             
     | 
| 365 | 
         
            +
                a) Disclaiming warranty or limiting liability differently from the
         
     | 
| 366 | 
         
            +
                terms of sections 15 and 16 of this License; or
         
     | 
| 367 | 
         
            +
             
     | 
| 368 | 
         
            +
                b) Requiring preservation of specified reasonable legal notices or
         
     | 
| 369 | 
         
            +
                author attributions in that material or in the Appropriate Legal
         
     | 
| 370 | 
         
            +
                Notices displayed by works containing it; or
         
     | 
| 371 | 
         
            +
             
     | 
| 372 | 
         
            +
                c) Prohibiting misrepresentation of the origin of that material, or
         
     | 
| 373 | 
         
            +
                requiring that modified versions of such material be marked in
         
     | 
| 374 | 
         
            +
                reasonable ways as different from the original version; or
         
     | 
| 375 | 
         
            +
             
     | 
| 376 | 
         
            +
                d) Limiting the use for publicity purposes of names of licensors or
         
     | 
| 377 | 
         
            +
                authors of the material; or
         
     | 
| 378 | 
         
            +
             
     | 
| 379 | 
         
            +
                e) Declining to grant rights under trademark law for use of some
         
     | 
| 380 | 
         
            +
                trade names, trademarks, or service marks; or
         
     | 
| 381 | 
         
            +
             
     | 
| 382 | 
         
            +
                f) Requiring indemnification of licensors and authors of that
         
     | 
| 383 | 
         
            +
                material by anyone who conveys the material (or modified versions of
         
     | 
| 384 | 
         
            +
                it) with contractual assumptions of liability to the recipient, for
         
     | 
| 385 | 
         
            +
                any liability that these contractual assumptions directly impose on
         
     | 
| 386 | 
         
            +
                those licensors and authors.
         
     | 
| 387 | 
         
            +
             
     | 
| 388 | 
         
            +
              All other non-permissive additional terms are considered "further
         
     | 
| 389 | 
         
            +
            restrictions" within the meaning of section 10.  If the Program as you
         
     | 
| 390 | 
         
            +
            received it, or any part of it, contains a notice stating that it is
         
     | 
| 391 | 
         
            +
            governed by this License along with a term that is a further
         
     | 
| 392 | 
         
            +
            restriction, you may remove that term.  If a license document contains
         
     | 
| 393 | 
         
            +
            a further restriction but permits relicensing or conveying under this
         
     | 
| 394 | 
         
            +
            License, you may add to a covered work material governed by the terms
         
     | 
| 395 | 
         
            +
            of that license document, provided that the further restriction does
         
     | 
| 396 | 
         
            +
            not survive such relicensing or conveying.
         
     | 
| 397 | 
         
            +
             
     | 
| 398 | 
         
            +
              If you add terms to a covered work in accord with this section, you
         
     | 
| 399 | 
         
            +
            must place, in the relevant source files, a statement of the
         
     | 
| 400 | 
         
            +
            additional terms that apply to those files, or a notice indicating
         
     | 
| 401 | 
         
            +
            where to find the applicable terms.
         
     | 
| 402 | 
         
            +
             
     | 
| 403 | 
         
            +
              Additional terms, permissive or non-permissive, may be stated in the
         
     | 
| 404 | 
         
            +
            form of a separately written license, or stated as exceptions;
         
     | 
| 405 | 
         
            +
            the above requirements apply either way.
         
     | 
| 406 | 
         
            +
             
     | 
| 407 | 
         
            +
              8. Termination.
         
     | 
| 408 | 
         
            +
             
     | 
| 409 | 
         
            +
              You may not propagate or modify a covered work except as expressly
         
     | 
| 410 | 
         
            +
            provided under this License.  Any attempt otherwise to propagate or
         
     | 
| 411 | 
         
            +
            modify it is void, and will automatically terminate your rights under
         
     | 
| 412 | 
         
            +
            this License (including any patent licenses granted under the third
         
     | 
| 413 | 
         
            +
            paragraph of section 11).
         
     | 
| 414 | 
         
            +
             
     | 
| 415 | 
         
            +
              However, if you cease all violation of this License, then your
         
     | 
| 416 | 
         
            +
            license from a particular copyright holder is reinstated (a)
         
     | 
| 417 | 
         
            +
            provisionally, unless and until the copyright holder explicitly and
         
     | 
| 418 | 
         
            +
            finally terminates your license, and (b) permanently, if the copyright
         
     | 
| 419 | 
         
            +
            holder fails to notify you of the violation by some reasonable means
         
     | 
| 420 | 
         
            +
            prior to 60 days after the cessation.
         
     | 
| 421 | 
         
            +
             
     | 
| 422 | 
         
            +
              Moreover, your license from a particular copyright holder is
         
     | 
| 423 | 
         
            +
            reinstated permanently if the copyright holder notifies you of the
         
     | 
| 424 | 
         
            +
            violation by some reasonable means, this is the first time you have
         
     | 
| 425 | 
         
            +
            received notice of violation of this License (for any work) from that
         
     | 
| 426 | 
         
            +
            copyright holder, and you cure the violation prior to 30 days after
         
     | 
| 427 | 
         
            +
            your receipt of the notice.
         
     | 
| 428 | 
         
            +
             
     | 
| 429 | 
         
            +
              Termination of your rights under this section does not terminate the
         
     | 
| 430 | 
         
            +
            licenses of parties who have received copies or rights from you under
         
     | 
| 431 | 
         
            +
            this License.  If your rights have been terminated and not permanently
         
     | 
| 432 | 
         
            +
            reinstated, you do not qualify to receive new licenses for the same
         
     | 
| 433 | 
         
            +
            material under section 10.
         
     | 
| 434 | 
         
            +
             
     | 
| 435 | 
         
            +
              9. Acceptance Not Required for Having Copies.
         
     | 
| 436 | 
         
            +
             
     | 
| 437 | 
         
            +
              You are not required to accept this License in order to receive or
         
     | 
| 438 | 
         
            +
            run a copy of the Program.  Ancillary propagation of a covered work
         
     | 
| 439 | 
         
            +
            occurring solely as a consequence of using peer-to-peer transmission
         
     | 
| 440 | 
         
            +
            to receive a copy likewise does not require acceptance.  However,
         
     | 
| 441 | 
         
            +
            nothing other than this License grants you permission to propagate or
         
     | 
| 442 | 
         
            +
            modify any covered work.  These actions infringe copyright if you do
         
     | 
| 443 | 
         
            +
            not accept this License.  Therefore, by modifying or propagating a
         
     | 
| 444 | 
         
            +
            covered work, you indicate your acceptance of this License to do so.
         
     | 
| 445 | 
         
            +
             
     | 
| 446 | 
         
            +
              10. Automatic Licensing of Downstream Recipients.
         
     | 
| 447 | 
         
            +
             
     | 
| 448 | 
         
            +
              Each time you convey a covered work, the recipient automatically
         
     | 
| 449 | 
         
            +
            receives a license from the original licensors, to run, modify and
         
     | 
| 450 | 
         
            +
            propagate that work, subject to this License.  You are not responsible
         
     | 
| 451 | 
         
            +
            for enforcing compliance by third parties with this License.
         
     | 
| 452 | 
         
            +
             
     | 
| 453 | 
         
            +
              An "entity transaction" is a transaction transferring control of an
         
     | 
| 454 | 
         
            +
            organization, or substantially all assets of one, or subdividing an
         
     | 
| 455 | 
         
            +
            organization, or merging organizations.  If propagation of a covered
         
     | 
| 456 | 
         
            +
            work results from an entity transaction, each party to that
         
     | 
| 457 | 
         
            +
            transaction who receives a copy of the work also receives whatever
         
     | 
| 458 | 
         
            +
            licenses to the work the party's predecessor in interest had or could
         
     | 
| 459 | 
         
            +
            give under the previous paragraph, plus a right to possession of the
         
     | 
| 460 | 
         
            +
            Corresponding Source of the work from the predecessor in interest, if
         
     | 
| 461 | 
         
            +
            the predecessor has it or can get it with reasonable efforts.
         
     | 
| 462 | 
         
            +
             
     | 
| 463 | 
         
            +
              You may not impose any further restrictions on the exercise of the
         
     | 
| 464 | 
         
            +
            rights granted or affirmed under this License.  For example, you may
         
     | 
| 465 | 
         
            +
            not impose a license fee, royalty, or other charge for exercise of
         
     | 
| 466 | 
         
            +
            rights granted under this License, and you may not initiate litigation
         
     | 
| 467 | 
         
            +
            (including a cross-claim or counterclaim in a lawsuit) alleging that
         
     | 
| 468 | 
         
            +
            any patent claim is infringed by making, using, selling, offering for
         
     | 
| 469 | 
         
            +
            sale, or importing the Program or any portion of it.
         
     | 
| 470 | 
         
            +
             
     | 
| 471 | 
         
            +
              11. Patents.
         
     | 
| 472 | 
         
            +
             
     | 
| 473 | 
         
            +
              A "contributor" is a copyright holder who authorizes use under this
         
     | 
| 474 | 
         
            +
            License of the Program or a work on which the Program is based.  The
         
     | 
| 475 | 
         
            +
            work thus licensed is called the contributor's "contributor version".
         
     | 
| 476 | 
         
            +
             
     | 
| 477 | 
         
            +
              A contributor's "essential patent claims" are all patent claims
         
     | 
| 478 | 
         
            +
            owned or controlled by the contributor, whether already acquired or
         
     | 
| 479 | 
         
            +
            hereafter acquired, that would be infringed by some manner, permitted
         
     | 
| 480 | 
         
            +
            by this License, of making, using, or selling its contributor version,
         
     | 
| 481 | 
         
            +
            but do not include claims that would be infringed only as a
         
     | 
| 482 | 
         
            +
            consequence of further modification of the contributor version.  For
         
     | 
| 483 | 
         
            +
            purposes of this definition, "control" includes the right to grant
         
     | 
| 484 | 
         
            +
            patent sublicenses in a manner consistent with the requirements of
         
     | 
| 485 | 
         
            +
            this License.
         
     | 
| 486 | 
         
            +
             
     | 
| 487 | 
         
            +
              Each contributor grants you a non-exclusive, worldwide, royalty-free
         
     | 
| 488 | 
         
            +
            patent license under the contributor's essential patent claims, to
         
     | 
| 489 | 
         
            +
            make, use, sell, offer for sale, import and otherwise run, modify and
         
     | 
| 490 | 
         
            +
            propagate the contents of its contributor version.
         
     | 
| 491 | 
         
            +
             
     | 
| 492 | 
         
            +
              In the following three paragraphs, a "patent license" is any express
         
     | 
| 493 | 
         
            +
            agreement or commitment, however denominated, not to enforce a patent
         
     | 
| 494 | 
         
            +
            (such as an express permission to practice a patent or covenant not to
         
     | 
| 495 | 
         
            +
            sue for patent infringement).  To "grant" such a patent license to a
         
     | 
| 496 | 
         
            +
            party means to make such an agreement or commitment not to enforce a
         
     | 
| 497 | 
         
            +
            patent against the party.
         
     | 
| 498 | 
         
            +
             
     | 
| 499 | 
         
            +
              If you convey a covered work, knowingly relying on a patent license,
         
     | 
| 500 | 
         
            +
            and the Corresponding Source of the work is not available for anyone
         
     | 
| 501 | 
         
            +
            to copy, free of charge and under the terms of this License, through a
         
     | 
| 502 | 
         
            +
            publicly available network server or other readily accessible means,
         
     | 
| 503 | 
         
            +
            then you must either (1) cause the Corresponding Source to be so
         
     | 
| 504 | 
         
            +
            available, or (2) arrange to deprive yourself of the benefit of the
         
     | 
| 505 | 
         
            +
            patent license for this particular work, or (3) arrange, in a manner
         
     | 
| 506 | 
         
            +
            consistent with the requirements of this License, to extend the patent
         
     | 
| 507 | 
         
            +
            license to downstream recipients.  "Knowingly relying" means you have
         
     | 
| 508 | 
         
            +
            actual knowledge that, but for the patent license, your conveying the
         
     | 
| 509 | 
         
            +
            covered work in a country, or your recipient's use of the covered work
         
     | 
| 510 | 
         
            +
            in a country, would infringe one or more identifiable patents in that
         
     | 
| 511 | 
         
            +
            country that you have reason to believe are valid.
         
     | 
| 512 | 
         
            +
             
     | 
| 513 | 
         
            +
              If, pursuant to or in connection with a single transaction or
         
     | 
| 514 | 
         
            +
            arrangement, you convey, or propagate by procuring conveyance of, a
         
     | 
| 515 | 
         
            +
            covered work, and grant a patent license to some of the parties
         
     | 
| 516 | 
         
            +
            receiving the covered work authorizing them to use, propagate, modify
         
     | 
| 517 | 
         
            +
            or convey a specific copy of the covered work, then the patent license
         
     | 
| 518 | 
         
            +
            you grant is automatically extended to all recipients of the covered
         
     | 
| 519 | 
         
            +
            work and works based on it.
         
     | 
| 520 | 
         
            +
             
     | 
| 521 | 
         
            +
              A patent license is "discriminatory" if it does not include within
         
     | 
| 522 | 
         
            +
            the scope of its coverage, prohibits the exercise of, or is
         
     | 
| 523 | 
         
            +
            conditioned on the non-exercise of one or more of the rights that are
         
     | 
| 524 | 
         
            +
            specifically granted under this License.  You may not convey a covered
         
     | 
| 525 | 
         
            +
            work if you are a party to an arrangement with a third party that is
         
     | 
| 526 | 
         
            +
            in the business of distributing software, under which you make payment
         
     | 
| 527 | 
         
            +
            to the third party based on the extent of your activity of conveying
         
     | 
| 528 | 
         
            +
            the work, and under which the third party grants, to any of the
         
     | 
| 529 | 
         
            +
            parties who would receive the covered work from you, a discriminatory
         
     | 
| 530 | 
         
            +
            patent license (a) in connection with copies of the covered work
         
     | 
| 531 | 
         
            +
            conveyed by you (or copies made from those copies), or (b) primarily
         
     | 
| 532 | 
         
            +
            for and in connection with specific products or compilations that
         
     | 
| 533 | 
         
            +
            contain the covered work, unless you entered into that arrangement,
         
     | 
| 534 | 
         
            +
            or that patent license was granted, prior to 28 March 2007.
         
     | 
| 535 | 
         
            +
             
     | 
| 536 | 
         
            +
              Nothing in this License shall be construed as excluding or limiting
         
     | 
| 537 | 
         
            +
            any implied license or other defenses to infringement that may
         
     | 
| 538 | 
         
            +
            otherwise be available to you under applicable patent law.
         
     | 
| 539 | 
         
            +
             
     | 
| 540 | 
         
            +
              12. No Surrender of Others' Freedom.
         
     | 
| 541 | 
         
            +
             
     | 
| 542 | 
         
            +
              If conditions are imposed on you (whether by court order, agreement or
         
     | 
| 543 | 
         
            +
            otherwise) that contradict the conditions of this License, they do not
         
     | 
| 544 | 
         
            +
            excuse you from the conditions of this License.  If you cannot convey a
         
     | 
| 545 | 
         
            +
            covered work so as to satisfy simultaneously your obligations under this
         
     | 
| 546 | 
         
            +
            License and any other pertinent obligations, then as a consequence you may
         
     | 
| 547 | 
         
            +
            not convey it at all.  For example, if you agree to terms that obligate you
         
     | 
| 548 | 
         
            +
            to collect a royalty for further conveying from those to whom you convey
         
     | 
| 549 | 
         
            +
            the Program, the only way you could satisfy both those terms and this
         
     | 
| 550 | 
         
            +
            License would be to refrain entirely from conveying the Program.
         
     | 
| 551 | 
         
            +
             
     | 
| 552 | 
         
            +
              13. Use with the GNU Affero General Public License.
         
     | 
| 553 | 
         
            +
             
     | 
| 554 | 
         
            +
              Notwithstanding any other provision of this License, you have
         
     | 
| 555 | 
         
            +
            permission to link or combine any covered work with a work licensed
         
     | 
| 556 | 
         
            +
            under version 3 of the GNU Affero General Public License into a single
         
     | 
| 557 | 
         
            +
            combined work, and to convey the resulting work.  The terms of this
         
     | 
| 558 | 
         
            +
            License will continue to apply to the part which is the covered work,
         
     | 
| 559 | 
         
            +
            but the special requirements of the GNU Affero General Public License,
         
     | 
| 560 | 
         
            +
            section 13, concerning interaction through a network will apply to the
         
     | 
| 561 | 
         
            +
            combination as such.
         
     | 
| 562 | 
         
            +
             
     | 
| 563 | 
         
            +
              14. Revised Versions of this License.
         
     | 
| 564 | 
         
            +
             
     | 
| 565 | 
         
            +
              The Free Software Foundation may publish revised and/or new versions of
         
     | 
| 566 | 
         
            +
            the GNU General Public License from time to time.  Such new versions will
         
     | 
| 567 | 
         
            +
            be similar in spirit to the present version, but may differ in detail to
         
     | 
| 568 | 
         
            +
            address new problems or concerns.
         
     | 
| 569 | 
         
            +
             
     | 
| 570 | 
         
            +
              Each version is given a distinguishing version number.  If the
         
     | 
| 571 | 
         
            +
            Program specifies that a certain numbered version of the GNU General
         
     | 
| 572 | 
         
            +
            Public License "or any later version" applies to it, you have the
         
     | 
| 573 | 
         
            +
            option of following the terms and conditions either of that numbered
         
     | 
| 574 | 
         
            +
            version or of any later version published by the Free Software
         
     | 
| 575 | 
         
            +
            Foundation.  If the Program does not specify a version number of the
         
     | 
| 576 | 
         
            +
            GNU General Public License, you may choose any version ever published
         
     | 
| 577 | 
         
            +
            by the Free Software Foundation.
         
     | 
| 578 | 
         
            +
             
     | 
| 579 | 
         
            +
              If the Program specifies that a proxy can decide which future
         
     | 
| 580 | 
         
            +
            versions of the GNU General Public License can be used, that proxy's
         
     | 
| 581 | 
         
            +
            public statement of acceptance of a version permanently authorizes you
         
     | 
| 582 | 
         
            +
            to choose that version for the Program.
         
     | 
| 583 | 
         
            +
             
     | 
| 584 | 
         
            +
              Later license versions may give you additional or different
         
     | 
| 585 | 
         
            +
            permissions.  However, no additional obligations are imposed on any
         
     | 
| 586 | 
         
            +
            author or copyright holder as a result of your choosing to follow a
         
     | 
| 587 | 
         
            +
            later version.
         
     | 
| 588 | 
         
            +
             
     | 
| 589 | 
         
            +
              15. Disclaimer of Warranty.
         
     | 
| 590 | 
         
            +
             
     | 
| 591 | 
         
            +
              THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
         
     | 
| 592 | 
         
            +
            APPLICABLE LAW.  EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
         
     | 
| 593 | 
         
            +
            HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
         
     | 
| 594 | 
         
            +
            OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
         
     | 
| 595 | 
         
            +
            THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
         
     | 
| 596 | 
         
            +
            PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
         
     | 
| 597 | 
         
            +
            IS WITH YOU.  SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
         
     | 
| 598 | 
         
            +
            ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
         
     | 
| 599 | 
         
            +
             
     | 
| 600 | 
         
            +
              16. Limitation of Liability.
         
     | 
| 601 | 
         
            +
             
     | 
| 602 | 
         
            +
              IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
         
     | 
| 603 | 
         
            +
            WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
         
     | 
| 604 | 
         
            +
            THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
         
     | 
| 605 | 
         
            +
            GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
         
     | 
| 606 | 
         
            +
            USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
         
     | 
| 607 | 
         
            +
            DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
         
     | 
| 608 | 
         
            +
            PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
         
     | 
| 609 | 
         
            +
            EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
         
     | 
| 610 | 
         
            +
            SUCH DAMAGES.
         
     | 
| 611 | 
         
            +
             
     | 
| 612 | 
         
            +
              17. Interpretation of Sections 15 and 16.
         
     | 
| 613 | 
         
            +
             
     | 
| 614 | 
         
            +
              If the disclaimer of warranty and limitation of liability provided
         
     | 
| 615 | 
         
            +
            above cannot be given local legal effect according to their terms,
         
     | 
| 616 | 
         
            +
            reviewing courts shall apply local law that most closely approximates
         
     | 
| 617 | 
         
            +
            an absolute waiver of all civil liability in connection with the
         
     | 
| 618 | 
         
            +
            Program, unless a warranty or assumption of liability accompanies a
         
     | 
| 619 | 
         
            +
            copy of the Program in return for a fee.
         
     | 
| 620 | 
         
            +
             
     | 
| 621 | 
         
            +
                                 END OF TERMS AND CONDITIONS
         
     | 
| 622 | 
         
            +
             
     | 
| 623 | 
         
            +
                        How to Apply These Terms to Your New Programs
         
     | 
| 624 | 
         
            +
             
     | 
| 625 | 
         
            +
              If you develop a new program, and you want it to be of the greatest
         
     | 
| 626 | 
         
            +
            possible use to the public, the best way to achieve this is to make it
         
     | 
| 627 | 
         
            +
            free software which everyone can redistribute and change under these terms.
         
     | 
| 628 | 
         
            +
             
     | 
| 629 | 
         
            +
              To do so, attach the following notices to the program.  It is safest
         
     | 
| 630 | 
         
            +
            to attach them to the start of each source file to most effectively
         
     | 
| 631 | 
         
            +
            state the exclusion of warranty; and each file should have at least
         
     | 
| 632 | 
         
            +
            the "copyright" line and a pointer to where the full notice is found.
         
     | 
| 633 | 
         
            +
             
     | 
| 634 | 
         
            +
                <one line to give the program's name and a brief idea of what it does.>
         
     | 
| 635 | 
         
            +
                Copyright (C) <year>  <name of author>
         
     | 
| 636 | 
         
            +
             
     | 
| 637 | 
         
            +
                This program is free software: you can redistribute it and/or modify
         
     | 
| 638 | 
         
            +
                it under the terms of the GNU General Public License as published by
         
     | 
| 639 | 
         
            +
                the Free Software Foundation, either version 3 of the License, or
         
     | 
| 640 | 
         
            +
                (at your option) any later version.
         
     | 
| 641 | 
         
            +
             
     | 
| 642 | 
         
            +
                This program is distributed in the hope that it will be useful,
         
     | 
| 643 | 
         
            +
                but WITHOUT ANY WARRANTY; without even the implied warranty of
         
     | 
| 644 | 
         
            +
                MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
         
     | 
| 645 | 
         
            +
                GNU General Public License for more details.
         
     | 
| 646 | 
         
            +
             
     | 
| 647 | 
         
            +
                You should have received a copy of the GNU General Public License
         
     | 
| 648 | 
         
            +
                along with this program.  If not, see <https://www.gnu.org/licenses/>.
         
     | 
| 649 | 
         
            +
             
     | 
| 650 | 
         
            +
            Also add information on how to contact you by electronic and paper mail.
         
     | 
| 651 | 
         
            +
             
     | 
| 652 | 
         
            +
              If the program does terminal interaction, make it output a short
         
     | 
| 653 | 
         
            +
            notice like this when it starts in an interactive mode:
         
     | 
| 654 | 
         
            +
             
     | 
| 655 | 
         
            +
                <program>  Copyright (C) <year>  <name of author>
         
     | 
| 656 | 
         
            +
                This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
         
     | 
| 657 | 
         
            +
                This is free software, and you are welcome to redistribute it
         
     | 
| 658 | 
         
            +
                under certain conditions; type `show c' for details.
         
     | 
| 659 | 
         
            +
             
     | 
| 660 | 
         
            +
            The hypothetical commands `show w' and `show c' should show the appropriate
         
     | 
| 661 | 
         
            +
            parts of the General Public License.  Of course, your program's commands
         
     | 
| 662 | 
         
            +
            might be different; for a GUI interface, you would use an "about box".
         
     | 
| 663 | 
         
            +
             
     | 
| 664 | 
         
            +
              You should also get your employer (if you work as a programmer) or school,
         
     | 
| 665 | 
         
            +
            if any, to sign a "copyright disclaimer" for the program, if necessary.
         
     | 
| 666 | 
         
            +
            For more information on this, and how to apply and follow the GNU GPL, see
         
     | 
| 667 | 
         
            +
            <https://www.gnu.org/licenses/>.
         
     | 
| 668 | 
         
            +
             
     | 
| 669 | 
         
            +
              The GNU General Public License does not permit incorporating your program
         
     | 
| 670 | 
         
            +
            into proprietary programs.  If your program is a subroutine library, you
         
     | 
| 671 | 
         
            +
            may consider it more useful to permit linking proprietary applications with
         
     | 
| 672 | 
         
            +
            the library.  If this is what you want to do, use the GNU Lesser General
         
     | 
| 673 | 
         
            +
            Public License instead of this License.  But first, please read
         
     | 
| 674 | 
         
            +
            <https://www.gnu.org/licenses/why-not-lgpl.html>.
         
     | 
    	
        args_manager.py
    ADDED
    
    | 
         @@ -0,0 +1,55 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import ldm_patched.modules.args_parser as args_parser
         
     | 
| 2 | 
         
            +
            import os
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            from tempfile import gettempdir
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            args_parser.parser.add_argument("--share", action='store_true', help="Set whether to share on Gradio.")
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            args_parser.parser.add_argument("--preset", type=str, default=None, help="Apply specified UI preset.")
         
     | 
| 9 | 
         
            +
            args_parser.parser.add_argument("--disable-preset-selection", action='store_true',
         
     | 
| 10 | 
         
            +
                                            help="Disables preset selection in Gradio.")
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            args_parser.parser.add_argument("--language", type=str, default='default',
         
     | 
| 13 | 
         
            +
                                            help="Translate UI using json files in [language] folder. "
         
     | 
| 14 | 
         
            +
                                              "For example, [--language example] will use [language/example.json] for translation.")
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            # For example, https://github.com/lllyasviel/Fooocus/issues/849
         
     | 
| 17 | 
         
            +
            args_parser.parser.add_argument("--disable-offload-from-vram", action="store_true",
         
     | 
| 18 | 
         
            +
                                            help="Force loading models to vram when the unload can be avoided. "
         
     | 
| 19 | 
         
            +
                                              "Some Mac users may need this.")
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            args_parser.parser.add_argument("--theme", type=str, help="launches the UI with light or dark theme", default=None)
         
     | 
| 22 | 
         
            +
            args_parser.parser.add_argument("--disable-image-log", action='store_true',
         
     | 
| 23 | 
         
            +
                                            help="Prevent writing images and logs to hard drive.")
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
            args_parser.parser.add_argument("--disable-analytics", action='store_true',
         
     | 
| 26 | 
         
            +
                                            help="Disables analytics for Gradio.")
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
            args_parser.parser.add_argument("--disable-metadata", action='store_true',
         
     | 
| 29 | 
         
            +
                                            help="Disables saving metadata to images.")
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
            args_parser.parser.add_argument("--disable-preset-download", action='store_true',
         
     | 
| 32 | 
         
            +
                                            help="Disables downloading models for presets", default=False)
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
            args_parser.parser.add_argument("--always-download-new-model", action='store_true',
         
     | 
| 35 | 
         
            +
                                            help="Always download newer models ", default=False)
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
            args_parser.parser.set_defaults(
         
     | 
| 38 | 
         
            +
                disable_cuda_malloc=True,
         
     | 
| 39 | 
         
            +
                in_browser=True,
         
     | 
| 40 | 
         
            +
                port=None
         
     | 
| 41 | 
         
            +
            )
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
            args_parser.args = args_parser.parser.parse_args()
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
            # (Disable by default because of issues like https://github.com/lllyasviel/Fooocus/issues/724)
         
     | 
| 46 | 
         
            +
            args_parser.args.always_offload_from_vram = not args_parser.args.disable_offload_from_vram
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
            if args_parser.args.disable_analytics:
         
     | 
| 49 | 
         
            +
                import os
         
     | 
| 50 | 
         
            +
                os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
            if args_parser.args.disable_in_browser:
         
     | 
| 53 | 
         
            +
                args_parser.args.in_browser = False
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
            args = args_parser.args
         
     | 
    	
        auth-example.json
    ADDED
    
    | 
         @@ -0,0 +1,6 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            [
         
     | 
| 2 | 
         
            +
                {
         
     | 
| 3 | 
         
            +
                    "user": "sitting-duck-1",
         
     | 
| 4 | 
         
            +
                    "pass": "very-bad-publicly-known-password-change-it"
         
     | 
| 5 | 
         
            +
                }
         
     | 
| 6 | 
         
            +
            ]
         
     | 
    	
        build_launcher.py
    ADDED
    
    | 
         @@ -0,0 +1,26 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import os
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            win32_root = os.path.dirname(os.path.dirname(__file__))
         
     | 
| 4 | 
         
            +
            python_embeded_path = os.path.join(win32_root, 'python_embeded')
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            is_win32_standalone_build = os.path.exists(python_embeded_path) and os.path.isdir(python_embeded_path)
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            win32_cmd = '''
         
     | 
| 9 | 
         
            +
            .\python_embeded\python.exe -s Fooocus\entry_with_update.py {cmds} %*
         
     | 
| 10 | 
         
            +
            pause
         
     | 
| 11 | 
         
            +
            '''
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            def build_launcher():
         
     | 
| 15 | 
         
            +
                if not is_win32_standalone_build:
         
     | 
| 16 | 
         
            +
                    return
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
                presets = [None, 'anime', 'realistic']
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
                for preset in presets:
         
     | 
| 21 | 
         
            +
                    win32_cmd_preset = win32_cmd.replace('{cmds}', '' if preset is None else f'--preset {preset}')
         
     | 
| 22 | 
         
            +
                    bat_path = os.path.join(win32_root, 'run.bat' if preset is None else f'run_{preset}.bat')
         
     | 
| 23 | 
         
            +
                    if not os.path.exists(bat_path):
         
     | 
| 24 | 
         
            +
                        with open(bat_path, "w", encoding="utf-8") as f:
         
     | 
| 25 | 
         
            +
                            f.write(win32_cmd_preset)
         
     | 
| 26 | 
         
            +
                return
         
     | 
    	
        css/style.css
    ADDED
    
    | 
         @@ -0,0 +1,396 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            /* based on https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/v1.6.0/style.css */
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            .loader-container {
         
     | 
| 4 | 
         
            +
              display: flex; /* Use flex to align items horizontally */
         
     | 
| 5 | 
         
            +
              align-items: center; /* Center items vertically within the container */
         
     | 
| 6 | 
         
            +
              white-space: nowrap; /* Prevent line breaks within the container */
         
     | 
| 7 | 
         
            +
            }
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            .loader {
         
     | 
| 10 | 
         
            +
              border: 8px solid #f3f3f3; /* Light grey */
         
     | 
| 11 | 
         
            +
              border-top: 8px solid #3498db; /* Blue */
         
     | 
| 12 | 
         
            +
              border-radius: 50%;
         
     | 
| 13 | 
         
            +
              width: 30px;
         
     | 
| 14 | 
         
            +
              height: 30px;
         
     | 
| 15 | 
         
            +
              animation: spin 2s linear infinite;
         
     | 
| 16 | 
         
            +
            }
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            @keyframes spin {
         
     | 
| 19 | 
         
            +
              0% { transform: rotate(0deg); }
         
     | 
| 20 | 
         
            +
              100% { transform: rotate(360deg); }
         
     | 
| 21 | 
         
            +
            }
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
            /* Style the progress bar */
         
     | 
| 24 | 
         
            +
            progress {
         
     | 
| 25 | 
         
            +
              appearance: none; /* Remove default styling */
         
     | 
| 26 | 
         
            +
              height: 20px; /* Set the height of the progress bar */
         
     | 
| 27 | 
         
            +
              border-radius: 5px; /* Round the corners of the progress bar */
         
     | 
| 28 | 
         
            +
              background-color: #f3f3f3; /* Light grey background */
         
     | 
| 29 | 
         
            +
              width: 100%;
         
     | 
| 30 | 
         
            +
            }
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
            /* Style the progress bar container */
         
     | 
| 33 | 
         
            +
            .progress-container {
         
     | 
| 34 | 
         
            +
              margin-left: 20px;
         
     | 
| 35 | 
         
            +
              margin-right: 20px;
         
     | 
| 36 | 
         
            +
              flex-grow: 1; /* Allow the progress container to take up remaining space */
         
     | 
| 37 | 
         
            +
            }
         
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
            /* Set the color of the progress bar fill */
         
     | 
| 40 | 
         
            +
            progress::-webkit-progress-value {
         
     | 
| 41 | 
         
            +
              background-color: #3498db; /* Blue color for the fill */
         
     | 
| 42 | 
         
            +
            }
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
            progress::-moz-progress-bar {
         
     | 
| 45 | 
         
            +
              background-color: #3498db; /* Blue color for the fill in Firefox */
         
     | 
| 46 | 
         
            +
            }
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
            /* Style the text on the progress bar */
         
     | 
| 49 | 
         
            +
            progress::after {
         
     | 
| 50 | 
         
            +
              content: attr(value '%'); /* Display the progress value followed by '%' */
         
     | 
| 51 | 
         
            +
              position: absolute;
         
     | 
| 52 | 
         
            +
              top: 50%;
         
     | 
| 53 | 
         
            +
              left: 50%;
         
     | 
| 54 | 
         
            +
              transform: translate(-50%, -50%);
         
     | 
| 55 | 
         
            +
              color: white; /* Set text color */
         
     | 
| 56 | 
         
            +
              font-size: 14px; /* Set font size */
         
     | 
| 57 | 
         
            +
            }
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
            /* Style other texts */
         
     | 
| 60 | 
         
            +
            .loader-container > span {
         
     | 
| 61 | 
         
            +
              margin-left: 5px; /* Add spacing between the progress bar and the text */
         
     | 
| 62 | 
         
            +
            }
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
            .progress-bar > .generating {
         
     | 
| 65 | 
         
            +
              display: none !important;
         
     | 
| 66 | 
         
            +
            }
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
            .progress-bar{
         
     | 
| 69 | 
         
            +
              height: 30px !important;
         
     | 
| 70 | 
         
            +
            }
         
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
            .type_row{
         
     | 
| 73 | 
         
            +
              height: 80px !important;
         
     | 
| 74 | 
         
            +
            }
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
            .type_row_half{
         
     | 
| 77 | 
         
            +
              height: 32px !important;
         
     | 
| 78 | 
         
            +
            }
         
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
            .scroll-hide{
         
     | 
| 81 | 
         
            +
              resize: none !important;
         
     | 
| 82 | 
         
            +
            }
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
            .refresh_button{
         
     | 
| 85 | 
         
            +
              border: none !important;
         
     | 
| 86 | 
         
            +
              background: none !important;
         
     | 
| 87 | 
         
            +
              font-size: none !important;
         
     | 
| 88 | 
         
            +
              box-shadow: none !important;
         
     | 
| 89 | 
         
            +
            }
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
            .advanced_check_row{
         
     | 
| 92 | 
         
            +
              width: 250px !important;
         
     | 
| 93 | 
         
            +
            }
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
            .min_check{
         
     | 
| 96 | 
         
            +
              min-width: min(1px, 100%) !important;
         
     | 
| 97 | 
         
            +
            }
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
            .resizable_area {
         
     | 
| 100 | 
         
            +
              resize: vertical;
         
     | 
| 101 | 
         
            +
              overflow: auto !important;
         
     | 
| 102 | 
         
            +
            }
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
            .aspect_ratios label {
         
     | 
| 105 | 
         
            +
                width: 140px !important;
         
     | 
| 106 | 
         
            +
            }
         
     | 
| 107 | 
         
            +
             
     | 
| 108 | 
         
            +
            .aspect_ratios label span {
         
     | 
| 109 | 
         
            +
                white-space: nowrap !important;
         
     | 
| 110 | 
         
            +
            }
         
     | 
| 111 | 
         
            +
             
     | 
| 112 | 
         
            +
            .aspect_ratios label input {
         
     | 
| 113 | 
         
            +
                margin-left: -5px !important;
         
     | 
| 114 | 
         
            +
            }
         
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
            .lora_enable label {
         
     | 
| 117 | 
         
            +
              height: 100%;
         
     | 
| 118 | 
         
            +
            }
         
     | 
| 119 | 
         
            +
             
     | 
| 120 | 
         
            +
            .lora_enable label input {
         
     | 
| 121 | 
         
            +
              margin: auto;
         
     | 
| 122 | 
         
            +
            }
         
     | 
| 123 | 
         
            +
             
     | 
| 124 | 
         
            +
            .lora_enable label span {
         
     | 
| 125 | 
         
            +
              display: none;
         
     | 
| 126 | 
         
            +
            }
         
     | 
| 127 | 
         
            +
             
     | 
| 128 | 
         
            +
            @-moz-document url-prefix() {
         
     | 
| 129 | 
         
            +
              .lora_weight input[type=number] {
         
     | 
| 130 | 
         
            +
                width: 80px;
         
     | 
| 131 | 
         
            +
              }
         
     | 
| 132 | 
         
            +
            }
         
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
            #context-menu{
         
     | 
| 135 | 
         
            +
                z-index:9999;
         
     | 
| 136 | 
         
            +
                position:absolute;
         
     | 
| 137 | 
         
            +
                display:block;
         
     | 
| 138 | 
         
            +
                padding:0px 0;
         
     | 
| 139 | 
         
            +
                border:2px solid #a55000;
         
     | 
| 140 | 
         
            +
                border-radius:8px;
         
     | 
| 141 | 
         
            +
                box-shadow:1px 1px 2px #CE6400;
         
     | 
| 142 | 
         
            +
                width: 200px;
         
     | 
| 143 | 
         
            +
            }
         
     | 
| 144 | 
         
            +
             
     | 
| 145 | 
         
            +
            .context-menu-items{
         
     | 
| 146 | 
         
            +
                list-style: none;
         
     | 
| 147 | 
         
            +
                margin: 0;
         
     | 
| 148 | 
         
            +
                padding: 0;
         
     | 
| 149 | 
         
            +
            }
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
            .context-menu-items a{
         
     | 
| 152 | 
         
            +
                display:block;
         
     | 
| 153 | 
         
            +
                padding:5px;
         
     | 
| 154 | 
         
            +
                cursor:pointer;
         
     | 
| 155 | 
         
            +
            }
         
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
            .context-menu-items a:hover{
         
     | 
| 158 | 
         
            +
                background: #a55000;
         
     | 
| 159 | 
         
            +
            }
         
     | 
| 160 | 
         
            +
             
     | 
| 161 | 
         
            +
            .canvas-tooltip-info {
         
     | 
| 162 | 
         
            +
              position: absolute;
         
     | 
| 163 | 
         
            +
              top: 28px;
         
     | 
| 164 | 
         
            +
              left: 2px;
         
     | 
| 165 | 
         
            +
              cursor: help;
         
     | 
| 166 | 
         
            +
              background-color: rgba(0, 0, 0, 0.3);
         
     | 
| 167 | 
         
            +
              width: 20px;
         
     | 
| 168 | 
         
            +
              height: 20px;
         
     | 
| 169 | 
         
            +
              border-radius: 50%;
         
     | 
| 170 | 
         
            +
              display: flex;
         
     | 
| 171 | 
         
            +
              align-items: center;
         
     | 
| 172 | 
         
            +
              justify-content: center;
         
     | 
| 173 | 
         
            +
              flex-direction: column;
         
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
              z-index: 100;
         
     | 
| 176 | 
         
            +
            }
         
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
            .canvas-tooltip-info::after {
         
     | 
| 179 | 
         
            +
              content: '';
         
     | 
| 180 | 
         
            +
              display: block;
         
     | 
| 181 | 
         
            +
              width: 2px;
         
     | 
| 182 | 
         
            +
              height: 7px;
         
     | 
| 183 | 
         
            +
              background-color: white;
         
     | 
| 184 | 
         
            +
              margin-top: 2px;
         
     | 
| 185 | 
         
            +
            }
         
     | 
| 186 | 
         
            +
             
     | 
| 187 | 
         
            +
            .canvas-tooltip-info::before {
         
     | 
| 188 | 
         
            +
              content: '';
         
     | 
| 189 | 
         
            +
              display: block;
         
     | 
| 190 | 
         
            +
              width: 2px;
         
     | 
| 191 | 
         
            +
              height: 2px;
         
     | 
| 192 | 
         
            +
              background-color: white;
         
     | 
| 193 | 
         
            +
            }
         
     | 
| 194 | 
         
            +
             
     | 
| 195 | 
         
            +
            .canvas-tooltip-content {
         
     | 
| 196 | 
         
            +
              display: none;
         
     | 
| 197 | 
         
            +
              background-color: #f9f9f9;
         
     | 
| 198 | 
         
            +
              color: #333;
         
     | 
| 199 | 
         
            +
              border: 1px solid #ddd;
         
     | 
| 200 | 
         
            +
              padding: 15px;
         
     | 
| 201 | 
         
            +
              position: absolute;
         
     | 
| 202 | 
         
            +
              top: 40px;
         
     | 
| 203 | 
         
            +
              left: 10px;
         
     | 
| 204 | 
         
            +
              width: 250px;
         
     | 
| 205 | 
         
            +
              font-size: 16px;
         
     | 
| 206 | 
         
            +
              opacity: 0;
         
     | 
| 207 | 
         
            +
              border-radius: 8px;
         
     | 
| 208 | 
         
            +
              box-shadow: 0px 8px 16px 0px rgba(0,0,0,0.2);
         
     | 
| 209 | 
         
            +
             
     | 
| 210 | 
         
            +
              z-index: 100;
         
     | 
| 211 | 
         
            +
            }
         
     | 
| 212 | 
         
            +
             
     | 
| 213 | 
         
            +
            .canvas-tooltip:hover .canvas-tooltip-content {
         
     | 
| 214 | 
         
            +
              display: block;
         
     | 
| 215 | 
         
            +
              animation: fadeIn 0.5s;
         
     | 
| 216 | 
         
            +
              opacity: 1;
         
     | 
| 217 | 
         
            +
            }
         
     | 
| 218 | 
         
            +
             
     | 
| 219 | 
         
            +
            @keyframes fadeIn {
         
     | 
| 220 | 
         
            +
              from {opacity: 0;}
         
     | 
| 221 | 
         
            +
              to {opacity: 1;}
         
     | 
| 222 | 
         
            +
            }
         
     | 
| 223 | 
         
            +
             
     | 
| 224 | 
         
            +
            .styler {
         
     | 
| 225 | 
         
            +
              overflow:inherit !important;
         
     | 
| 226 | 
         
            +
            }
         
     | 
| 227 | 
         
            +
             
     | 
| 228 | 
         
            +
            .gradio-container{
         
     | 
| 229 | 
         
            +
              overflow: visible;
         
     | 
| 230 | 
         
            +
            }
         
     | 
| 231 | 
         
            +
             
     | 
| 232 | 
         
            +
            /* fullpage image viewer */
         
     | 
| 233 | 
         
            +
             
     | 
| 234 | 
         
            +
            #lightboxModal{
         
     | 
| 235 | 
         
            +
                display: none;
         
     | 
| 236 | 
         
            +
                position: fixed;
         
     | 
| 237 | 
         
            +
                z-index: 1001;
         
     | 
| 238 | 
         
            +
                left: 0;
         
     | 
| 239 | 
         
            +
                top: 0;
         
     | 
| 240 | 
         
            +
                width: 100%;
         
     | 
| 241 | 
         
            +
                height: 100%;
         
     | 
| 242 | 
         
            +
                overflow: auto;
         
     | 
| 243 | 
         
            +
                background-color: rgba(20, 20, 20, 0.95);
         
     | 
| 244 | 
         
            +
                user-select: none;
         
     | 
| 245 | 
         
            +
                -webkit-user-select: none;
         
     | 
| 246 | 
         
            +
                flex-direction: column;
         
     | 
| 247 | 
         
            +
            }
         
     | 
| 248 | 
         
            +
             
     | 
| 249 | 
         
            +
            .modalControls {
         
     | 
| 250 | 
         
            +
                display: flex;
         
     | 
| 251 | 
         
            +
                position: absolute;
         
     | 
| 252 | 
         
            +
                right: 0px;
         
     | 
| 253 | 
         
            +
                left: 0px;
         
     | 
| 254 | 
         
            +
                gap: 1em;
         
     | 
| 255 | 
         
            +
                padding: 1em;
         
     | 
| 256 | 
         
            +
                background-color:rgba(0,0,0,0);
         
     | 
| 257 | 
         
            +
                z-index: 1;
         
     | 
| 258 | 
         
            +
                transition: 0.2s ease background-color;
         
     | 
| 259 | 
         
            +
            }
         
     | 
| 260 | 
         
            +
            .modalControls:hover {
         
     | 
| 261 | 
         
            +
                background-color:rgba(0,0,0,0.9);
         
     | 
| 262 | 
         
            +
            }
         
     | 
| 263 | 
         
            +
            .modalClose {
         
     | 
| 264 | 
         
            +
                margin-left: auto;
         
     | 
| 265 | 
         
            +
            }
         
     | 
| 266 | 
         
            +
            .modalControls span{
         
     | 
| 267 | 
         
            +
                color: white;
         
     | 
| 268 | 
         
            +
                text-shadow: 0px 0px 0.25em black;
         
     | 
| 269 | 
         
            +
                font-size: 35px;
         
     | 
| 270 | 
         
            +
                font-weight: bold;
         
     | 
| 271 | 
         
            +
                cursor: pointer;
         
     | 
| 272 | 
         
            +
                width: 1em;
         
     | 
| 273 | 
         
            +
            }
         
     | 
| 274 | 
         
            +
             
     | 
| 275 | 
         
            +
            .modalControls span:hover, .modalControls span:focus{
         
     | 
| 276 | 
         
            +
                color: #999;
         
     | 
| 277 | 
         
            +
                text-decoration: none;
         
     | 
| 278 | 
         
            +
            }
         
     | 
| 279 | 
         
            +
             
     | 
| 280 | 
         
            +
            #lightboxModal > img {
         
     | 
| 281 | 
         
            +
                display: block;
         
     | 
| 282 | 
         
            +
                margin: auto;
         
     | 
| 283 | 
         
            +
                width: auto;
         
     | 
| 284 | 
         
            +
            }
         
     | 
| 285 | 
         
            +
             
     | 
| 286 | 
         
            +
            #lightboxModal > img.modalImageFullscreen{
         
     | 
| 287 | 
         
            +
                object-fit: contain;
         
     | 
| 288 | 
         
            +
                height: 100%;
         
     | 
| 289 | 
         
            +
                width: 100%;
         
     | 
| 290 | 
         
            +
                min-height: 0;
         
     | 
| 291 | 
         
            +
            }
         
     | 
| 292 | 
         
            +
             
     | 
| 293 | 
         
            +
            .modalPrev,
         
     | 
| 294 | 
         
            +
            .modalNext {
         
     | 
| 295 | 
         
            +
              cursor: pointer;
         
     | 
| 296 | 
         
            +
              position: absolute;
         
     | 
| 297 | 
         
            +
              top: 50%;
         
     | 
| 298 | 
         
            +
              width: auto;
         
     | 
| 299 | 
         
            +
              padding: 16px;
         
     | 
| 300 | 
         
            +
              margin-top: -50px;
         
     | 
| 301 | 
         
            +
              color: white;
         
     | 
| 302 | 
         
            +
              font-weight: bold;
         
     | 
| 303 | 
         
            +
              font-size: 20px;
         
     | 
| 304 | 
         
            +
              transition: 0.6s ease;
         
     | 
| 305 | 
         
            +
              border-radius: 0 3px 3px 0;
         
     | 
| 306 | 
         
            +
              user-select: none;
         
     | 
| 307 | 
         
            +
              -webkit-user-select: none;
         
     | 
| 308 | 
         
            +
            }
         
     | 
| 309 | 
         
            +
             
     | 
| 310 | 
         
            +
            .modalNext {
         
     | 
| 311 | 
         
            +
              right: 0;
         
     | 
| 312 | 
         
            +
              border-radius: 3px 0 0 3px;
         
     | 
| 313 | 
         
            +
            }
         
     | 
| 314 | 
         
            +
             
     | 
| 315 | 
         
            +
            .modalPrev:hover,
         
     | 
| 316 | 
         
            +
            .modalNext:hover {
         
     | 
| 317 | 
         
            +
              background-color: rgba(0, 0, 0, 0.8);
         
     | 
| 318 | 
         
            +
            }
         
     | 
| 319 | 
         
            +
             
     | 
| 320 | 
         
            +
            #imageARPreview {
         
     | 
| 321 | 
         
            +
                position: absolute;
         
     | 
| 322 | 
         
            +
                top: 0px;
         
     | 
| 323 | 
         
            +
                left: 0px;
         
     | 
| 324 | 
         
            +
                border: 2px solid red;
         
     | 
| 325 | 
         
            +
                background: rgba(255, 0, 0, 0.3);
         
     | 
| 326 | 
         
            +
                z-index: 900;
         
     | 
| 327 | 
         
            +
                pointer-events: none;
         
     | 
| 328 | 
         
            +
                display: none;
         
     | 
| 329 | 
         
            +
            }
         
     | 
| 330 | 
         
            +
             
     | 
| 331 | 
         
            +
            #stylePreviewOverlay {
         
     | 
| 332 | 
         
            +
                opacity: 0;
         
     | 
| 333 | 
         
            +
                pointer-events: none;
         
     | 
| 334 | 
         
            +
                width: 128px;
         
     | 
| 335 | 
         
            +
                height: 128px;
         
     | 
| 336 | 
         
            +
                position: fixed;
         
     | 
| 337 | 
         
            +
                top: 0px;
         
     | 
| 338 | 
         
            +
                left: 0px;
         
     | 
| 339 | 
         
            +
                border: solid 1px lightgrey;
         
     | 
| 340 | 
         
            +
                transform: translate(-140px, 20px);
         
     | 
| 341 | 
         
            +
                background-size: cover;
         
     | 
| 342 | 
         
            +
                background-position: center;
         
     | 
| 343 | 
         
            +
                background-color: rgba(0, 0, 0, 0.3);
         
     | 
| 344 | 
         
            +
                border-radius: 5px;
         
     | 
| 345 | 
         
            +
                z-index: 100;
         
     | 
| 346 | 
         
            +
                transition: transform 0.1s ease, opacity 0.3s ease;
         
     | 
| 347 | 
         
            +
            }
         
     | 
| 348 | 
         
            +
             
     | 
| 349 | 
         
            +
            #stylePreviewOverlay.lower-half {
         
     | 
| 350 | 
         
            +
                transform: translate(-140px, -140px);
         
     | 
| 351 | 
         
            +
            }
         
     | 
| 352 | 
         
            +
             
     | 
| 353 | 
         
            +
            /* scrollable box for style selections */
         
     | 
| 354 | 
         
            +
            .contain .tabs {
         
     | 
| 355 | 
         
            +
              height: 100%;
         
     | 
| 356 | 
         
            +
            }
         
     | 
| 357 | 
         
            +
             
     | 
| 358 | 
         
            +
            .contain .tabs .tabitem.style_selections_tab {
         
     | 
| 359 | 
         
            +
              height: 100%;
         
     | 
| 360 | 
         
            +
            }
         
     | 
| 361 | 
         
            +
             
     | 
| 362 | 
         
            +
            .contain .tabs .tabitem.style_selections_tab > div:first-child {
         
     | 
| 363 | 
         
            +
              height: 100%;
         
     | 
| 364 | 
         
            +
            }
         
     | 
| 365 | 
         
            +
             
     | 
| 366 | 
         
            +
            .contain .tabs .tabitem.style_selections_tab .style_selections {
         
     | 
| 367 | 
         
            +
              min-height: 200px;
         
     | 
| 368 | 
         
            +
              height: 100%;
         
     | 
| 369 | 
         
            +
            }
         
     | 
| 370 | 
         
            +
             
     | 
| 371 | 
         
            +
            .contain .tabs .tabitem.style_selections_tab .style_selections .wrap[data-testid="checkbox-group"] {
         
     | 
| 372 | 
         
            +
              position: absolute; /* remove this to disable scrolling within the checkbox-group */
         
     | 
| 373 | 
         
            +
              overflow: auto;
         
     | 
| 374 | 
         
            +
              padding-right: 2px;
         
     | 
| 375 | 
         
            +
              max-height: 100%;
         
     | 
| 376 | 
         
            +
            }
         
     | 
| 377 | 
         
            +
             
     | 
| 378 | 
         
            +
            .contain .tabs .tabitem.style_selections_tab .style_selections .wrap[data-testid="checkbox-group"] label {
         
     | 
| 379 | 
         
            +
              /* max-width: calc(35% - 15px) !important; */ /* add this to enable 3 columns layout */
         
     | 
| 380 | 
         
            +
              flex: calc(50% - 5px) !important;
         
     | 
| 381 | 
         
            +
            }
         
     | 
| 382 | 
         
            +
             
     | 
| 383 | 
         
            +
            .contain .tabs .tabitem.style_selections_tab .style_selections .wrap[data-testid="checkbox-group"] label span {
         
     | 
| 384 | 
         
            +
              /* white-space:nowrap; */ /* add this to disable text wrapping (better choice for 3 columns layout) */
         
     | 
| 385 | 
         
            +
              overflow: hidden;
         
     | 
| 386 | 
         
            +
              text-overflow: ellipsis;
         
     | 
| 387 | 
         
            +
            }
         
     | 
| 388 | 
         
            +
             
     | 
| 389 | 
         
            +
            /* styles preview tooltip */
         
     | 
| 390 | 
         
            +
            .preview-tooltip {
         
     | 
| 391 | 
         
            +
              background-color: #fff8;
         
     | 
| 392 | 
         
            +
              font-family: monospace;
         
     | 
| 393 | 
         
            +
              text-align: center;
         
     | 
| 394 | 
         
            +
              border-radius-top: 5px;
         
     | 
| 395 | 
         
            +
              display: none; /* remove this to enable tooltip in preview image */
         
     | 
| 396 | 
         
            +
            }
         
     | 
    	
        docker-compose.yml
    ADDED
    
    | 
         @@ -0,0 +1,38 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version: '3.9'
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            volumes:
         
     | 
| 4 | 
         
            +
              fooocus-data:
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            services:
         
     | 
| 7 | 
         
            +
              app:
         
     | 
| 8 | 
         
            +
                build: .
         
     | 
| 9 | 
         
            +
                image: fooocus
         
     | 
| 10 | 
         
            +
                ports:
         
     | 
| 11 | 
         
            +
                 - "7865:7865"
         
     | 
| 12 | 
         
            +
                environment:
         
     | 
| 13 | 
         
            +
                  - CMDARGS=--listen    # Arguments for launch.py.
         
     | 
| 14 | 
         
            +
                  - DATADIR=/content/data   # Directory which stores models, outputs dir
         
     | 
| 15 | 
         
            +
                  - config_path=/content/data/config.txt
         
     | 
| 16 | 
         
            +
                  - config_example_path=/content/data/config_modification_tutorial.txt
         
     | 
| 17 | 
         
            +
                  - path_checkpoints=/content/data/models/checkpoints/
         
     | 
| 18 | 
         
            +
                  - path_loras=/content/data/models/loras/
         
     | 
| 19 | 
         
            +
                  - path_embeddings=/content/data/models/embeddings/
         
     | 
| 20 | 
         
            +
                  - path_vae_approx=/content/data/models/vae_approx/
         
     | 
| 21 | 
         
            +
                  - path_upscale_models=/content/data/models/upscale_models/
         
     | 
| 22 | 
         
            +
                  - path_inpaint=/content/data/models/inpaint/
         
     | 
| 23 | 
         
            +
                  - path_controlnet=/content/data/models/controlnet/
         
     | 
| 24 | 
         
            +
                  - path_clip_vision=/content/data/models/clip_vision/
         
     | 
| 25 | 
         
            +
                  - path_fooocus_expansion=/content/data/models/prompt_expansion/fooocus_expansion/
         
     | 
| 26 | 
         
            +
                  - path_outputs=/content/app/outputs/    # Warning: If it is not located under '/content/app', you can't see history log!
         
     | 
| 27 | 
         
            +
                volumes:
         
     | 
| 28 | 
         
            +
                  - fooocus-data:/content/data
         
     | 
| 29 | 
         
            +
                  #- ./models:/import/models   # Once you import files, you don't need to mount again.
         
     | 
| 30 | 
         
            +
                  #- ./outputs:/import/outputs  # Once you import files, you don't need to mount again.
         
     | 
| 31 | 
         
            +
                tty: true
         
     | 
| 32 | 
         
            +
                deploy:
         
     | 
| 33 | 
         
            +
                  resources:
         
     | 
| 34 | 
         
            +
                    reservations:
         
     | 
| 35 | 
         
            +
                      devices:
         
     | 
| 36 | 
         
            +
                        - driver: nvidia
         
     | 
| 37 | 
         
            +
                          device_ids: ['0']
         
     | 
| 38 | 
         
            +
                          capabilities: [compute, utility]
         
     | 
    	
        docker.md
    ADDED
    
    | 
         @@ -0,0 +1,66 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # Fooocus on Docker
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            The docker image is based on NVIDIA CUDA 12.3 and PyTorch 2.0, see [Dockerfile](Dockerfile) and [requirements_docker.txt](requirements_docker.txt) for details.
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            ## Quick start
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            **This is just an easy way for testing. Please find more information in the [notes](#notes).**
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            1. Clone this repository
         
     | 
| 10 | 
         
            +
            2. Build the image with `docker compose build`
         
     | 
| 11 | 
         
            +
            3. Run the docker container with `docker compose up`. Building the image takes some time.
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            When you see the message  `Use the app with http://0.0.0.0:7865/` in the console, you can access the URL in your browser.
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            Your models and outputs are stored in the `fooocus-data` volume, which, depending on OS, is stored in `/var/lib/docker/volumes`.
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            ## Details
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            ### Update the container manually
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            When you are using `docker compose up` continuously, the container is not updated to the latest version of Fooocus automatically.
         
     | 
| 22 | 
         
            +
            Run `git pull` before executing `docker compose build --no-cache` to build an image with the latest Fooocus version.
         
     | 
| 23 | 
         
            +
            You can then start it with `docker compose up`
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
            ### Import models, outputs
         
     | 
| 26 | 
         
            +
            If you want to import files from models or the outputs folder, you can uncomment the following settings in the [docker-compose.yml](docker-compose.yml):
         
     | 
| 27 | 
         
            +
            ```
         
     | 
| 28 | 
         
            +
            #- ./models:/import/models   # Once you import files, you don't need to mount again.
         
     | 
| 29 | 
         
            +
            #- ./outputs:/import/outputs  # Once you import files, you don't need to mount again.
         
     | 
| 30 | 
         
            +
            ```
         
     | 
| 31 | 
         
            +
            After running `docker compose up`, your files will be copied into `/content/data/models` and `/content/data/outputs`
         
     | 
| 32 | 
         
            +
            Since `/content/data` is a persistent volume folder, your files will be persisted even when you re-run `docker compose up --build` without above volume settings.
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
            ### Paths inside the container
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
            |Path|Details|
         
     | 
| 38 | 
         
            +
            |-|-|
         
     | 
| 39 | 
         
            +
            |/content/app|The application stored folder|
         
     | 
| 40 | 
         
            +
            |/content/app/models.org|Original 'models' folder.<br> Files are copied to the '/content/app/models' which is symlinked to '/content/data/models' every time the container boots. (Existing files will not be overwritten.) |
         
     | 
| 41 | 
         
            +
            |/content/data|Persistent volume mount point|
         
     | 
| 42 | 
         
            +
            |/content/data/models|The folder is symlinked to '/content/app/models'|
         
     | 
| 43 | 
         
            +
            |/content/data/outputs|The folder is symlinked to '/content/app/outputs'|
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
            ### Environments
         
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
            You can change `config.txt` parameters by using environment variables.
         
     | 
| 48 | 
         
            +
            **The priority of using the environments is higher than the values defined in `config.txt`, and they will be saved to the `config_modification_tutorial.txt`**
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
            Docker specified environments are there. They are used by 'entrypoint.sh'
         
     | 
| 51 | 
         
            +
            |Environment|Details|
         
     | 
| 52 | 
         
            +
            |-|-|
         
     | 
| 53 | 
         
            +
            |DATADIR|'/content/data' location.|
         
     | 
| 54 | 
         
            +
            |CMDARGS|Arguments for [entry_with_update.py](entry_with_update.py) which is called by [entrypoint.sh](entrypoint.sh)|
         
     | 
| 55 | 
         
            +
            |config_path|'config.txt' location|
         
     | 
| 56 | 
         
            +
            |config_example_path|'config_modification_tutorial.txt' location|
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
            You can also use the same json key names and values explained in the 'config_modification_tutorial.txt' as the environments.
         
     | 
| 59 | 
         
            +
            See examples in the [docker-compose.yml](docker-compose.yml)
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
            ## Notes
         
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
            - Please keep 'path_outputs' under '/content/app'. Otherwise, you may get an error when you open the history log.
         
     | 
| 64 | 
         
            +
            - Docker on Mac/Windows still has issues in the form of slow volume access when you use "bind mount" volumes. Please refer to [this article](https://docs.docker.com/storage/volumes/#use-a-volume-with-docker-compose) for not using "bind mount".
         
     | 
| 65 | 
         
            +
            - The MPS backend (Metal Performance Shaders, Apple Silicon M1/M2/etc.) is not yet supported in Docker, see https://github.com/pytorch/pytorch/issues/81224
         
     | 
| 66 | 
         
            +
            - You can also use `docker compose up -d` to start the container detached and connect to the logs with `docker compose logs -f`. This way you can also close the terminal and keep the container running.
         
     | 
    	
        entry_with_update.py
    ADDED
    
    | 
         @@ -0,0 +1,46 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import os
         
     | 
| 2 | 
         
            +
            import sys
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            root = os.path.dirname(os.path.abspath(__file__))
         
     | 
| 6 | 
         
            +
            sys.path.append(root)
         
     | 
| 7 | 
         
            +
            os.chdir(root)
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            try:
         
     | 
| 11 | 
         
            +
                import pygit2
         
     | 
| 12 | 
         
            +
                pygit2.option(pygit2.GIT_OPT_SET_OWNER_VALIDATION, 0)
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
                repo = pygit2.Repository(os.path.abspath(os.path.dirname(__file__)))
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
                branch_name = repo.head.shorthand
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
                remote_name = 'origin'
         
     | 
| 19 | 
         
            +
                remote = repo.remotes[remote_name]
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
                remote.fetch()
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
                local_branch_ref = f'refs/heads/{branch_name}'
         
     | 
| 24 | 
         
            +
                local_branch = repo.lookup_reference(local_branch_ref)
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
                remote_reference = f'refs/remotes/{remote_name}/{branch_name}'
         
     | 
| 27 | 
         
            +
                remote_commit = repo.revparse_single(remote_reference)
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
                merge_result, _ = repo.merge_analysis(remote_commit.id)
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
                if merge_result & pygit2.GIT_MERGE_ANALYSIS_UP_TO_DATE:
         
     | 
| 32 | 
         
            +
                    print("Already up-to-date")
         
     | 
| 33 | 
         
            +
                elif merge_result & pygit2.GIT_MERGE_ANALYSIS_FASTFORWARD:
         
     | 
| 34 | 
         
            +
                    local_branch.set_target(remote_commit.id)
         
     | 
| 35 | 
         
            +
                    repo.head.set_target(remote_commit.id)
         
     | 
| 36 | 
         
            +
                    repo.checkout_tree(repo.get(remote_commit.id))
         
     | 
| 37 | 
         
            +
                    repo.reset(local_branch.target, pygit2.GIT_RESET_HARD)
         
     | 
| 38 | 
         
            +
                    print("Fast-forward merge")
         
     | 
| 39 | 
         
            +
                elif merge_result & pygit2.GIT_MERGE_ANALYSIS_NORMAL:
         
     | 
| 40 | 
         
            +
                    print("Update failed - Did you modify any file?")
         
     | 
| 41 | 
         
            +
            except Exception as e:
         
     | 
| 42 | 
         
            +
                print('Update failed.')
         
     | 
| 43 | 
         
            +
                print(str(e))
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
            print('Update succeeded.')
         
     | 
| 46 | 
         
            +
            from launch import *
         
     | 
    	
        entrypoint.sh
    ADDED
    
    | 
         @@ -0,0 +1,33 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            #!/bin/bash
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            ORIGINALDIR=/content/app
         
     | 
| 4 | 
         
            +
            # Use predefined DATADIR if it is defined
         
     | 
| 5 | 
         
            +
            [[ x"${DATADIR}" == "x" ]] && DATADIR=/content/data
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            # Make persistent dir from original dir
         
     | 
| 8 | 
         
            +
            function mklink () {
         
     | 
| 9 | 
         
            +
            	mkdir -p $DATADIR/$1
         
     | 
| 10 | 
         
            +
            	ln -s $DATADIR/$1 $ORIGINALDIR
         
     | 
| 11 | 
         
            +
            }
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            # Copy old files from import dir
         
     | 
| 14 | 
         
            +
            function import () {
         
     | 
| 15 | 
         
            +
            	(test -d /import/$1 && cd /import/$1 && cp -Rpn . $DATADIR/$1/)
         
     | 
| 16 | 
         
            +
            }
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            cd $ORIGINALDIR
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            # models
         
     | 
| 21 | 
         
            +
            mklink models
         
     | 
| 22 | 
         
            +
            # Copy original files
         
     | 
| 23 | 
         
            +
            (cd $ORIGINALDIR/models.org && cp -Rpn . $ORIGINALDIR/models/)
         
     | 
| 24 | 
         
            +
            # Import old files
         
     | 
| 25 | 
         
            +
            import models
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
            # outputs
         
     | 
| 28 | 
         
            +
            mklink outputs
         
     | 
| 29 | 
         
            +
            # Import old files
         
     | 
| 30 | 
         
            +
            import outputs
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
            # Start application
         
     | 
| 33 | 
         
            +
            python launch.py $*
         
     | 
    	
        environment.yaml
    ADDED
    
    | 
         @@ -0,0 +1,7 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            name: fooocus
         
     | 
| 2 | 
         
            +
            channels:
         
     | 
| 3 | 
         
            +
              - defaults
         
     | 
| 4 | 
         
            +
            dependencies:
         
     | 
| 5 | 
         
            +
              - python=3.10
         
     | 
| 6 | 
         
            +
              - pip=23.0
         
     | 
| 7 | 
         
            +
              - packaging
         
     | 
    	
        experiments_expansion.py
    ADDED
    
    | 
         @@ -0,0 +1,8 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from modules.expansion import FooocusExpansion
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            expansion = FooocusExpansion()
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            text = 'a handsome man'
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            for i in range(64):
         
     | 
| 8 | 
         
            +
                print(expansion(text, seed=i))
         
     | 
    	
        experiments_face.py
    ADDED
    
    | 
         @@ -0,0 +1,7 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import cv2
         
     | 
| 2 | 
         
            +
            import extras.face_crop as cropper
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            img = cv2.imread('lena.png')
         
     | 
| 6 | 
         
            +
            result = cropper.crop_image(img)
         
     | 
| 7 | 
         
            +
            cv2.imwrite('lena_result.png', result)
         
     | 
    	
        experiments_interrogate.py
    ADDED
    
    | 
         @@ -0,0 +1,8 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import cv2
         
     | 
| 2 | 
         
            +
            from extras.interrogate import default_interrogator as default_interrogator_photo
         
     | 
| 3 | 
         
            +
            from extras.wd14tagger import default_interrogator as default_interrogator_anime
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            img = cv2.imread('./test_imgs/red_box.jpg')[:, :, ::-1].copy()
         
     | 
| 6 | 
         
            +
            print(default_interrogator_photo(img))
         
     | 
| 7 | 
         
            +
            img = cv2.imread('./test_imgs/miku.jpg')[:, :, ::-1].copy()
         
     | 
| 8 | 
         
            +
            print(default_interrogator_anime(img))
         
     | 
    	
        extras/BLIP/configs/bert_config.json
    ADDED
    
    | 
         @@ -0,0 +1,21 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "architectures": [
         
     | 
| 3 | 
         
            +
                "BertModel"
         
     | 
| 4 | 
         
            +
              ],
         
     | 
| 5 | 
         
            +
              "attention_probs_dropout_prob": 0.1,
         
     | 
| 6 | 
         
            +
              "hidden_act": "gelu",
         
     | 
| 7 | 
         
            +
              "hidden_dropout_prob": 0.1,
         
     | 
| 8 | 
         
            +
              "hidden_size": 768,
         
     | 
| 9 | 
         
            +
              "initializer_range": 0.02,
         
     | 
| 10 | 
         
            +
              "intermediate_size": 3072,
         
     | 
| 11 | 
         
            +
              "layer_norm_eps": 1e-12,
         
     | 
| 12 | 
         
            +
              "max_position_embeddings": 512,
         
     | 
| 13 | 
         
            +
              "model_type": "bert",
         
     | 
| 14 | 
         
            +
              "num_attention_heads": 12,
         
     | 
| 15 | 
         
            +
              "num_hidden_layers": 12,
         
     | 
| 16 | 
         
            +
              "pad_token_id": 0,
         
     | 
| 17 | 
         
            +
              "type_vocab_size": 2,
         
     | 
| 18 | 
         
            +
              "vocab_size": 30522,
         
     | 
| 19 | 
         
            +
              "encoder_width": 768,
         
     | 
| 20 | 
         
            +
              "add_cross_attention": true   
         
     | 
| 21 | 
         
            +
            }
         
     | 
    	
        extras/BLIP/configs/caption_coco.yaml
    ADDED
    
    | 
         @@ -0,0 +1,33 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            image_root: '/export/share/datasets/vision/coco/images/'
         
     | 
| 2 | 
         
            +
            ann_root: 'annotation'
         
     | 
| 3 | 
         
            +
            coco_gt_root: 'annotation/coco_gt'
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            # set pretrained as a file path or an url
         
     | 
| 6 | 
         
            +
            pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth'
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            # size of vit model; base or large
         
     | 
| 9 | 
         
            +
            vit: 'base'
         
     | 
| 10 | 
         
            +
            vit_grad_ckpt: False
         
     | 
| 11 | 
         
            +
            vit_ckpt_layer: 0
         
     | 
| 12 | 
         
            +
            batch_size: 32
         
     | 
| 13 | 
         
            +
            init_lr: 1e-5
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            # vit: 'large'
         
     | 
| 16 | 
         
            +
            # vit_grad_ckpt: True
         
     | 
| 17 | 
         
            +
            # vit_ckpt_layer: 5
         
     | 
| 18 | 
         
            +
            # batch_size: 16
         
     | 
| 19 | 
         
            +
            # init_lr: 2e-6
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            image_size: 384
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
            # generation configs
         
     | 
| 24 | 
         
            +
            max_length: 20  
         
     | 
| 25 | 
         
            +
            min_length: 5
         
     | 
| 26 | 
         
            +
            num_beams: 3
         
     | 
| 27 | 
         
            +
            prompt: 'a picture of '
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
            # optimizer
         
     | 
| 30 | 
         
            +
            weight_decay: 0.05
         
     | 
| 31 | 
         
            +
            min_lr: 0
         
     | 
| 32 | 
         
            +
            max_epoch: 5
         
     | 
| 33 | 
         
            +
             
     | 
    	
        extras/BLIP/configs/med_config.json
    ADDED
    
    | 
         @@ -0,0 +1,21 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "architectures": [
         
     | 
| 3 | 
         
            +
                "BertModel"
         
     | 
| 4 | 
         
            +
              ],
         
     | 
| 5 | 
         
            +
              "attention_probs_dropout_prob": 0.1,
         
     | 
| 6 | 
         
            +
              "hidden_act": "gelu",
         
     | 
| 7 | 
         
            +
              "hidden_dropout_prob": 0.1,
         
     | 
| 8 | 
         
            +
              "hidden_size": 768,
         
     | 
| 9 | 
         
            +
              "initializer_range": 0.02,
         
     | 
| 10 | 
         
            +
              "intermediate_size": 3072,
         
     | 
| 11 | 
         
            +
              "layer_norm_eps": 1e-12,
         
     | 
| 12 | 
         
            +
              "max_position_embeddings": 512,
         
     | 
| 13 | 
         
            +
              "model_type": "bert",
         
     | 
| 14 | 
         
            +
              "num_attention_heads": 12,
         
     | 
| 15 | 
         
            +
              "num_hidden_layers": 12,
         
     | 
| 16 | 
         
            +
              "pad_token_id": 0,
         
     | 
| 17 | 
         
            +
              "type_vocab_size": 2,
         
     | 
| 18 | 
         
            +
              "vocab_size": 30524,
         
     | 
| 19 | 
         
            +
              "encoder_width": 768,
         
     | 
| 20 | 
         
            +
              "add_cross_attention": true   
         
     | 
| 21 | 
         
            +
            }
         
     | 
    	
        extras/BLIP/configs/nlvr.yaml
    ADDED
    
    | 
         @@ -0,0 +1,21 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            image_root: '/export/share/datasets/vision/NLVR2/' 
         
     | 
| 2 | 
         
            +
            ann_root: 'annotation'
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            # set pretrained as a file path or an url
         
     | 
| 5 | 
         
            +
            pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_nlvr.pth'
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            #size of vit model; base or large
         
     | 
| 8 | 
         
            +
            vit: 'base'
         
     | 
| 9 | 
         
            +
            batch_size_train: 16 
         
     | 
| 10 | 
         
            +
            batch_size_test: 64 
         
     | 
| 11 | 
         
            +
            vit_grad_ckpt: False
         
     | 
| 12 | 
         
            +
            vit_ckpt_layer: 0
         
     | 
| 13 | 
         
            +
            max_epoch: 15
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            image_size: 384
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            # optimizer
         
     | 
| 18 | 
         
            +
            weight_decay: 0.05
         
     | 
| 19 | 
         
            +
            init_lr: 3e-5
         
     | 
| 20 | 
         
            +
            min_lr: 0
         
     | 
| 21 | 
         
            +
             
     | 
    	
        extras/BLIP/configs/nocaps.yaml
    ADDED
    
    | 
         @@ -0,0 +1,15 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            image_root: '/export/share/datasets/vision/nocaps/'
         
     | 
| 2 | 
         
            +
            ann_root: 'annotation'
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            # set pretrained as a file path or an url
         
     | 
| 5 | 
         
            +
            pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth'
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            vit: 'base'
         
     | 
| 8 | 
         
            +
            batch_size: 32
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            image_size: 384
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            max_length: 20
         
     | 
| 13 | 
         
            +
            min_length: 5
         
     | 
| 14 | 
         
            +
            num_beams: 3
         
     | 
| 15 | 
         
            +
            prompt: 'a picture of '
         
     | 
    	
        extras/BLIP/configs/pretrain.yaml
    ADDED
    
    | 
         @@ -0,0 +1,27 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            train_file: ['/export/share/junnan-li/VL_pretrain/annotation/coco_karpathy_train.json',
         
     | 
| 2 | 
         
            +
                         '/export/share/junnan-li/VL_pretrain/annotation/vg_caption.json',
         
     | 
| 3 | 
         
            +
                         ]
         
     | 
| 4 | 
         
            +
            laion_path: ''   
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            # size of vit model; base or large
         
     | 
| 7 | 
         
            +
            vit: 'base'
         
     | 
| 8 | 
         
            +
            vit_grad_ckpt: False
         
     | 
| 9 | 
         
            +
            vit_ckpt_layer: 0
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            image_size: 224
         
     | 
| 12 | 
         
            +
            batch_size: 75
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            queue_size: 57600
         
     | 
| 15 | 
         
            +
            alpha: 0.4
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            # optimizer
         
     | 
| 18 | 
         
            +
            weight_decay: 0.05
         
     | 
| 19 | 
         
            +
            init_lr: 3e-4
         
     | 
| 20 | 
         
            +
            min_lr: 1e-6
         
     | 
| 21 | 
         
            +
            warmup_lr: 1e-6
         
     | 
| 22 | 
         
            +
            lr_decay_rate: 0.9
         
     | 
| 23 | 
         
            +
            max_epoch: 20
         
     | 
| 24 | 
         
            +
            warmup_steps: 3000
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
             
     | 
    	
        extras/BLIP/configs/retrieval_coco.yaml
    ADDED
    
    | 
         @@ -0,0 +1,34 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            image_root: '/export/share/datasets/vision/coco/images/'
         
     | 
| 2 | 
         
            +
            ann_root: 'annotation'
         
     | 
| 3 | 
         
            +
            dataset: 'coco'
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            # set pretrained as a file path or an url
         
     | 
| 6 | 
         
            +
            pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth'
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            # size of vit model; base or large
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            vit: 'base'
         
     | 
| 11 | 
         
            +
            batch_size_train: 32
         
     | 
| 12 | 
         
            +
            batch_size_test: 64
         
     | 
| 13 | 
         
            +
            vit_grad_ckpt: True
         
     | 
| 14 | 
         
            +
            vit_ckpt_layer: 4
         
     | 
| 15 | 
         
            +
            init_lr: 1e-5
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            # vit: 'large'
         
     | 
| 18 | 
         
            +
            # batch_size_train: 16
         
     | 
| 19 | 
         
            +
            # batch_size_test: 32
         
     | 
| 20 | 
         
            +
            # vit_grad_ckpt: True
         
     | 
| 21 | 
         
            +
            # vit_ckpt_layer: 12
         
     | 
| 22 | 
         
            +
            # init_lr: 5e-6
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
            image_size: 384
         
     | 
| 25 | 
         
            +
            queue_size: 57600
         
     | 
| 26 | 
         
            +
            alpha: 0.4
         
     | 
| 27 | 
         
            +
            k_test: 256
         
     | 
| 28 | 
         
            +
            negative_all_rank: True
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
            # optimizer
         
     | 
| 31 | 
         
            +
            weight_decay: 0.05
         
     | 
| 32 | 
         
            +
            min_lr: 0
         
     | 
| 33 | 
         
            +
            max_epoch: 6
         
     | 
| 34 | 
         
            +
             
     | 
    	
        extras/BLIP/configs/retrieval_flickr.yaml
    ADDED
    
    | 
         @@ -0,0 +1,34 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            image_root: '/export/share/datasets/vision/flickr30k/'
         
     | 
| 2 | 
         
            +
            ann_root: 'annotation'
         
     | 
| 3 | 
         
            +
            dataset: 'flickr'
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            # set pretrained as a file path or an url
         
     | 
| 6 | 
         
            +
            pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_flickr.pth'
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            # size of vit model; base or large
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            vit: 'base'
         
     | 
| 11 | 
         
            +
            batch_size_train: 32
         
     | 
| 12 | 
         
            +
            batch_size_test: 64
         
     | 
| 13 | 
         
            +
            vit_grad_ckpt: True
         
     | 
| 14 | 
         
            +
            vit_ckpt_layer: 4
         
     | 
| 15 | 
         
            +
            init_lr: 1e-5
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            # vit: 'large'
         
     | 
| 18 | 
         
            +
            # batch_size_train: 16
         
     | 
| 19 | 
         
            +
            # batch_size_test: 32
         
     | 
| 20 | 
         
            +
            # vit_grad_ckpt: True
         
     | 
| 21 | 
         
            +
            # vit_ckpt_layer: 10
         
     | 
| 22 | 
         
            +
            # init_lr: 5e-6
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
            image_size: 384
         
     | 
| 25 | 
         
            +
            queue_size: 57600
         
     | 
| 26 | 
         
            +
            alpha: 0.4
         
     | 
| 27 | 
         
            +
            k_test: 128
         
     | 
| 28 | 
         
            +
            negative_all_rank: False
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
            # optimizer
         
     | 
| 31 | 
         
            +
            weight_decay: 0.05
         
     | 
| 32 | 
         
            +
            min_lr: 0
         
     | 
| 33 | 
         
            +
            max_epoch: 6
         
     | 
| 34 | 
         
            +
             
     | 
    	
        extras/BLIP/configs/retrieval_msrvtt.yaml
    ADDED
    
    | 
         @@ -0,0 +1,12 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            video_root: '/export/share/dongxuli/data/msrvtt_retrieval/videos'
         
     | 
| 2 | 
         
            +
            ann_root: 'annotation'
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            # set pretrained as a file path or an url
         
     | 
| 5 | 
         
            +
            pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth'
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            # size of vit model; base or large
         
     | 
| 8 | 
         
            +
            vit: 'base'
         
     | 
| 9 | 
         
            +
            batch_size: 64
         
     | 
| 10 | 
         
            +
            k_test: 128
         
     | 
| 11 | 
         
            +
            image_size: 384
         
     | 
| 12 | 
         
            +
            num_frm_test: 8
         
     | 
    	
        extras/BLIP/configs/vqa.yaml
    ADDED
    
    | 
         @@ -0,0 +1,25 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            vqa_root: '/export/share/datasets/vision/VQA/Images/mscoco/' #followed by train2014/
         
     | 
| 2 | 
         
            +
            vg_root: '/export/share/datasets/vision/visual-genome/'  #followed by image/
         
     | 
| 3 | 
         
            +
            train_files: ['vqa_train','vqa_val','vg_qa']
         
     | 
| 4 | 
         
            +
            ann_root: 'annotation'
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            # set pretrained as a file path or an url
         
     | 
| 7 | 
         
            +
            pretrained: 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth'
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            # size of vit model; base or large
         
     | 
| 10 | 
         
            +
            vit: 'base'
         
     | 
| 11 | 
         
            +
            batch_size_train: 16 
         
     | 
| 12 | 
         
            +
            batch_size_test: 32 
         
     | 
| 13 | 
         
            +
            vit_grad_ckpt: False
         
     | 
| 14 | 
         
            +
            vit_ckpt_layer: 0
         
     | 
| 15 | 
         
            +
            init_lr: 2e-5
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            image_size: 480
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            k_test: 128
         
     | 
| 20 | 
         
            +
            inference: 'rank'
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
            # optimizer
         
     | 
| 23 | 
         
            +
            weight_decay: 0.05
         
     | 
| 24 | 
         
            +
            min_lr: 0
         
     | 
| 25 | 
         
            +
            max_epoch: 10
         
     | 
    	
        extras/BLIP/models/bert_tokenizer/config.json
    ADDED
    
    | 
         @@ -0,0 +1,23 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "architectures": [
         
     | 
| 3 | 
         
            +
                "BertForMaskedLM"
         
     | 
| 4 | 
         
            +
              ],
         
     | 
| 5 | 
         
            +
              "attention_probs_dropout_prob": 0.1,
         
     | 
| 6 | 
         
            +
              "gradient_checkpointing": false,
         
     | 
| 7 | 
         
            +
              "hidden_act": "gelu",
         
     | 
| 8 | 
         
            +
              "hidden_dropout_prob": 0.1,
         
     | 
| 9 | 
         
            +
              "hidden_size": 768,
         
     | 
| 10 | 
         
            +
              "initializer_range": 0.02,
         
     | 
| 11 | 
         
            +
              "intermediate_size": 3072,
         
     | 
| 12 | 
         
            +
              "layer_norm_eps": 1e-12,
         
     | 
| 13 | 
         
            +
              "max_position_embeddings": 512,
         
     | 
| 14 | 
         
            +
              "model_type": "bert",
         
     | 
| 15 | 
         
            +
              "num_attention_heads": 12,
         
     | 
| 16 | 
         
            +
              "num_hidden_layers": 12,
         
     | 
| 17 | 
         
            +
              "pad_token_id": 0,
         
     | 
| 18 | 
         
            +
              "position_embedding_type": "absolute",
         
     | 
| 19 | 
         
            +
              "transformers_version": "4.6.0.dev0",
         
     | 
| 20 | 
         
            +
              "type_vocab_size": 2,
         
     | 
| 21 | 
         
            +
              "use_cache": true,
         
     | 
| 22 | 
         
            +
              "vocab_size": 30522
         
     | 
| 23 | 
         
            +
            }
         
     | 
    	
        extras/BLIP/models/bert_tokenizer/tokenizer.json
    ADDED
    
    | 
         The diff for this file is too large to render. 
		See raw diff 
     | 
| 
         | 
    	
        extras/BLIP/models/bert_tokenizer/tokenizer_config.json
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            {
         
     | 
| 2 | 
         
            +
              "do_lower_case": true
         
     | 
| 3 | 
         
            +
            }
         
     | 
    	
        extras/BLIP/models/bert_tokenizer/vocab.txt
    ADDED
    
    | 
         The diff for this file is too large to render. 
		See raw diff 
     | 
| 
         | 
    	
        extras/BLIP/models/blip.py
    ADDED
    
    | 
         @@ -0,0 +1,239 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            '''
         
     | 
| 2 | 
         
            +
             * Copyright (c) 2022, salesforce.com, inc.
         
     | 
| 3 | 
         
            +
             * All rights reserved.
         
     | 
| 4 | 
         
            +
             * SPDX-License-Identifier: BSD-3-Clause
         
     | 
| 5 | 
         
            +
             * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
         
     | 
| 6 | 
         
            +
             * By Junnan Li
         
     | 
| 7 | 
         
            +
            '''
         
     | 
| 8 | 
         
            +
            import warnings
         
     | 
| 9 | 
         
            +
            warnings.filterwarnings("ignore")
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            from extras.BLIP.models.vit import VisionTransformer, interpolate_pos_embed
         
     | 
| 12 | 
         
            +
            from extras.BLIP.models.med import BertConfig, BertModel, BertLMHeadModel
         
     | 
| 13 | 
         
            +
            from transformers import BertTokenizer
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            import torch
         
     | 
| 16 | 
         
            +
            from torch import nn
         
     | 
| 17 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            import os
         
     | 
| 20 | 
         
            +
            from urllib.parse import urlparse
         
     | 
| 21 | 
         
            +
            from timm.models.hub import download_cached_file
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
            class BLIP_Base(nn.Module):
         
     | 
| 24 | 
         
            +
                def __init__(self,                 
         
     | 
| 25 | 
         
            +
                             med_config = 'configs/med_config.json',  
         
     | 
| 26 | 
         
            +
                             image_size = 224,
         
     | 
| 27 | 
         
            +
                             vit = 'base',
         
     | 
| 28 | 
         
            +
                             vit_grad_ckpt = False,
         
     | 
| 29 | 
         
            +
                             vit_ckpt_layer = 0,                 
         
     | 
| 30 | 
         
            +
                             ):
         
     | 
| 31 | 
         
            +
                    """
         
     | 
| 32 | 
         
            +
                    Args:
         
     | 
| 33 | 
         
            +
                        med_config (str): path for the mixture of encoder-decoder model's configuration file
         
     | 
| 34 | 
         
            +
                        image_size (int): input image size
         
     | 
| 35 | 
         
            +
                        vit (str): model size of vision transformer
         
     | 
| 36 | 
         
            +
                    """               
         
     | 
| 37 | 
         
            +
                    super().__init__()
         
     | 
| 38 | 
         
            +
                    
         
     | 
| 39 | 
         
            +
                    self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
         
     | 
| 40 | 
         
            +
                    self.tokenizer = init_tokenizer()   
         
     | 
| 41 | 
         
            +
                    med_config = BertConfig.from_json_file(med_config)
         
     | 
| 42 | 
         
            +
                    med_config.encoder_width = vision_width
         
     | 
| 43 | 
         
            +
                    self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)  
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
                    
         
     | 
| 46 | 
         
            +
                def forward(self, image, caption, mode):
         
     | 
| 47 | 
         
            +
                    
         
     | 
| 48 | 
         
            +
                    assert mode in ['image', 'text', 'multimodal'], "mode parameter must be image, text, or multimodal"
         
     | 
| 49 | 
         
            +
                    text = self.tokenizer(caption, return_tensors="pt").to(image.device) 
         
     | 
| 50 | 
         
            +
                    
         
     | 
| 51 | 
         
            +
                    if mode=='image':    
         
     | 
| 52 | 
         
            +
                        # return image features
         
     | 
| 53 | 
         
            +
                        image_embeds = self.visual_encoder(image)             
         
     | 
| 54 | 
         
            +
                        return image_embeds
         
     | 
| 55 | 
         
            +
                    
         
     | 
| 56 | 
         
            +
                    elif mode=='text':
         
     | 
| 57 | 
         
            +
                        # return text features
         
     | 
| 58 | 
         
            +
                        text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,                      
         
     | 
| 59 | 
         
            +
                                                        return_dict = True, mode = 'text')  
         
     | 
| 60 | 
         
            +
                        return text_output.last_hidden_state
         
     | 
| 61 | 
         
            +
                    
         
     | 
| 62 | 
         
            +
                    elif mode=='multimodal':
         
     | 
| 63 | 
         
            +
                        # return multimodel features
         
     | 
| 64 | 
         
            +
                        image_embeds = self.visual_encoder(image)    
         
     | 
| 65 | 
         
            +
                        image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)      
         
     | 
| 66 | 
         
            +
                        
         
     | 
| 67 | 
         
            +
                        text.input_ids[:,0] = self.tokenizer.enc_token_id
         
     | 
| 68 | 
         
            +
                        output = self.text_encoder(text.input_ids,
         
     | 
| 69 | 
         
            +
                                                   attention_mask = text.attention_mask,
         
     | 
| 70 | 
         
            +
                                                   encoder_hidden_states = image_embeds,
         
     | 
| 71 | 
         
            +
                                                   encoder_attention_mask = image_atts,      
         
     | 
| 72 | 
         
            +
                                                   return_dict = True,
         
     | 
| 73 | 
         
            +
                                                  )              
         
     | 
| 74 | 
         
            +
                        return output.last_hidden_state
         
     | 
| 75 | 
         
            +
                    
         
     | 
| 76 | 
         
            +
                    
         
     | 
| 77 | 
         
            +
                    
         
     | 
| 78 | 
         
            +
            class BLIP_Decoder(nn.Module):
         
     | 
| 79 | 
         
            +
                def __init__(self,                 
         
     | 
| 80 | 
         
            +
                             med_config = 'configs/med_config.json',  
         
     | 
| 81 | 
         
            +
                             image_size = 384,
         
     | 
| 82 | 
         
            +
                             vit = 'base',
         
     | 
| 83 | 
         
            +
                             vit_grad_ckpt = False,
         
     | 
| 84 | 
         
            +
                             vit_ckpt_layer = 0,
         
     | 
| 85 | 
         
            +
                             prompt = 'a picture of ',
         
     | 
| 86 | 
         
            +
                             ):
         
     | 
| 87 | 
         
            +
                    """
         
     | 
| 88 | 
         
            +
                    Args:
         
     | 
| 89 | 
         
            +
                        med_config (str): path for the mixture of encoder-decoder model's configuration file
         
     | 
| 90 | 
         
            +
                        image_size (int): input image size
         
     | 
| 91 | 
         
            +
                        vit (str): model size of vision transformer
         
     | 
| 92 | 
         
            +
                    """            
         
     | 
| 93 | 
         
            +
                    super().__init__()
         
     | 
| 94 | 
         
            +
                    
         
     | 
| 95 | 
         
            +
                    self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
         
     | 
| 96 | 
         
            +
                    self.tokenizer = init_tokenizer()   
         
     | 
| 97 | 
         
            +
                    med_config = BertConfig.from_json_file(med_config)
         
     | 
| 98 | 
         
            +
                    med_config.encoder_width = vision_width
         
     | 
| 99 | 
         
            +
                    self.text_decoder = BertLMHeadModel(config=med_config)    
         
     | 
| 100 | 
         
            +
                    
         
     | 
| 101 | 
         
            +
                    self.prompt = prompt
         
     | 
| 102 | 
         
            +
                    self.prompt_length = len(self.tokenizer(self.prompt).input_ids)-1
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
                    
         
     | 
| 105 | 
         
            +
                def forward(self, image, caption):
         
     | 
| 106 | 
         
            +
                    
         
     | 
| 107 | 
         
            +
                    image_embeds = self.visual_encoder(image) 
         
     | 
| 108 | 
         
            +
                    image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
         
     | 
| 109 | 
         
            +
                    
         
     | 
| 110 | 
         
            +
                    text = self.tokenizer(caption, padding='longest', truncation=True, max_length=40, return_tensors="pt").to(image.device) 
         
     | 
| 111 | 
         
            +
                    
         
     | 
| 112 | 
         
            +
                    text.input_ids[:,0] = self.tokenizer.bos_token_id
         
     | 
| 113 | 
         
            +
                    
         
     | 
| 114 | 
         
            +
                    decoder_targets = text.input_ids.masked_fill(text.input_ids == self.tokenizer.pad_token_id, -100)         
         
     | 
| 115 | 
         
            +
                    decoder_targets[:,:self.prompt_length] = -100
         
     | 
| 116 | 
         
            +
                 
         
     | 
| 117 | 
         
            +
                    decoder_output = self.text_decoder(text.input_ids, 
         
     | 
| 118 | 
         
            +
                                                       attention_mask = text.attention_mask, 
         
     | 
| 119 | 
         
            +
                                                       encoder_hidden_states = image_embeds,
         
     | 
| 120 | 
         
            +
                                                       encoder_attention_mask = image_atts,                  
         
     | 
| 121 | 
         
            +
                                                       labels = decoder_targets,
         
     | 
| 122 | 
         
            +
                                                       return_dict = True,   
         
     | 
| 123 | 
         
            +
                                                      )   
         
     | 
| 124 | 
         
            +
                    loss_lm = decoder_output.loss
         
     | 
| 125 | 
         
            +
                    
         
     | 
| 126 | 
         
            +
                    return loss_lm
         
     | 
| 127 | 
         
            +
                    
         
     | 
| 128 | 
         
            +
                def generate(self, image, sample=False, num_beams=3, max_length=30, min_length=10, top_p=0.9, repetition_penalty=1.0):
         
     | 
| 129 | 
         
            +
                    image_embeds = self.visual_encoder(image)
         
     | 
| 130 | 
         
            +
             
     | 
| 131 | 
         
            +
                    if not sample:
         
     | 
| 132 | 
         
            +
                        image_embeds = image_embeds.repeat_interleave(num_beams,dim=0)
         
     | 
| 133 | 
         
            +
                        
         
     | 
| 134 | 
         
            +
                    image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
         
     | 
| 135 | 
         
            +
                    model_kwargs = {"encoder_hidden_states": image_embeds, "encoder_attention_mask":image_atts}
         
     | 
| 136 | 
         
            +
                    
         
     | 
| 137 | 
         
            +
                    prompt = [self.prompt] * image.size(0)
         
     | 
| 138 | 
         
            +
                    input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(image.device) 
         
     | 
| 139 | 
         
            +
                    input_ids[:,0] = self.tokenizer.bos_token_id
         
     | 
| 140 | 
         
            +
                    input_ids = input_ids[:, :-1] 
         
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
                    if sample:
         
     | 
| 143 | 
         
            +
                        #nucleus sampling
         
     | 
| 144 | 
         
            +
                        outputs = self.text_decoder.generate(input_ids=input_ids,
         
     | 
| 145 | 
         
            +
                                                              max_length=max_length,
         
     | 
| 146 | 
         
            +
                                                              min_length=min_length,
         
     | 
| 147 | 
         
            +
                                                              do_sample=True,
         
     | 
| 148 | 
         
            +
                                                              top_p=top_p,
         
     | 
| 149 | 
         
            +
                                                              num_return_sequences=1,
         
     | 
| 150 | 
         
            +
                                                              eos_token_id=self.tokenizer.sep_token_id,
         
     | 
| 151 | 
         
            +
                                                              pad_token_id=self.tokenizer.pad_token_id, 
         
     | 
| 152 | 
         
            +
                                                              repetition_penalty=1.1,                                            
         
     | 
| 153 | 
         
            +
                                                              **model_kwargs)
         
     | 
| 154 | 
         
            +
                    else:
         
     | 
| 155 | 
         
            +
                        #beam search
         
     | 
| 156 | 
         
            +
                        outputs = self.text_decoder.generate(input_ids=input_ids,
         
     | 
| 157 | 
         
            +
                                                              max_length=max_length,
         
     | 
| 158 | 
         
            +
                                                              min_length=min_length,
         
     | 
| 159 | 
         
            +
                                                              num_beams=num_beams,
         
     | 
| 160 | 
         
            +
                                                              eos_token_id=self.tokenizer.sep_token_id,
         
     | 
| 161 | 
         
            +
                                                              pad_token_id=self.tokenizer.pad_token_id,     
         
     | 
| 162 | 
         
            +
                                                              repetition_penalty=repetition_penalty,
         
     | 
| 163 | 
         
            +
                                                              **model_kwargs)            
         
     | 
| 164 | 
         
            +
                        
         
     | 
| 165 | 
         
            +
                    captions = []    
         
     | 
| 166 | 
         
            +
                    for output in outputs:
         
     | 
| 167 | 
         
            +
                        caption = self.tokenizer.decode(output, skip_special_tokens=True)    
         
     | 
| 168 | 
         
            +
                        captions.append(caption[len(self.prompt):])
         
     | 
| 169 | 
         
            +
                    return captions
         
     | 
| 170 | 
         
            +
                
         
     | 
| 171 | 
         
            +
             
     | 
| 172 | 
         
            +
            def blip_decoder(pretrained='',**kwargs):
         
     | 
| 173 | 
         
            +
                model = BLIP_Decoder(**kwargs)
         
     | 
| 174 | 
         
            +
                if pretrained:
         
     | 
| 175 | 
         
            +
                    model,msg = load_checkpoint(model,pretrained)
         
     | 
| 176 | 
         
            +
                    assert(len(msg.missing_keys)==0)
         
     | 
| 177 | 
         
            +
                return model    
         
     | 
| 178 | 
         
            +
                
         
     | 
| 179 | 
         
            +
            def blip_feature_extractor(pretrained='',**kwargs):
         
     | 
| 180 | 
         
            +
                model = BLIP_Base(**kwargs)
         
     | 
| 181 | 
         
            +
                if pretrained:
         
     | 
| 182 | 
         
            +
                    model,msg = load_checkpoint(model,pretrained)
         
     | 
| 183 | 
         
            +
                    assert(len(msg.missing_keys)==0)
         
     | 
| 184 | 
         
            +
                return model        
         
     | 
| 185 | 
         
            +
             
     | 
| 186 | 
         
            +
            def init_tokenizer():
         
     | 
| 187 | 
         
            +
                tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "bert_tokenizer")
         
     | 
| 188 | 
         
            +
                tokenizer = BertTokenizer.from_pretrained(tokenizer_path)
         
     | 
| 189 | 
         
            +
                tokenizer.add_special_tokens({'bos_token':'[DEC]'})
         
     | 
| 190 | 
         
            +
                tokenizer.add_special_tokens({'additional_special_tokens':['[ENC]']})       
         
     | 
| 191 | 
         
            +
                tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0]  
         
     | 
| 192 | 
         
            +
                return tokenizer
         
     | 
| 193 | 
         
            +
             
     | 
| 194 | 
         
            +
             
     | 
| 195 | 
         
            +
            def create_vit(vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0):
         
     | 
| 196 | 
         
            +
                    
         
     | 
| 197 | 
         
            +
                assert vit in ['base', 'large'], "vit parameter must be base or large"
         
     | 
| 198 | 
         
            +
                if vit=='base':
         
     | 
| 199 | 
         
            +
                    vision_width = 768
         
     | 
| 200 | 
         
            +
                    visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=12, 
         
     | 
| 201 | 
         
            +
                                                       num_heads=12, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
         
     | 
| 202 | 
         
            +
                                                       drop_path_rate=0 or drop_path_rate
         
     | 
| 203 | 
         
            +
                                                      )   
         
     | 
| 204 | 
         
            +
                elif vit=='large':
         
     | 
| 205 | 
         
            +
                    vision_width = 1024
         
     | 
| 206 | 
         
            +
                    visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=24, 
         
     | 
| 207 | 
         
            +
                                                       num_heads=16, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer,
         
     | 
| 208 | 
         
            +
                                                       drop_path_rate=0.1 or drop_path_rate
         
     | 
| 209 | 
         
            +
                                                      )   
         
     | 
| 210 | 
         
            +
                return visual_encoder, vision_width
         
     | 
| 211 | 
         
            +
             
     | 
| 212 | 
         
            +
            def is_url(url_or_filename):
         
     | 
| 213 | 
         
            +
                parsed = urlparse(url_or_filename)
         
     | 
| 214 | 
         
            +
                return parsed.scheme in ("http", "https")
         
     | 
| 215 | 
         
            +
             
     | 
| 216 | 
         
            +
            def load_checkpoint(model,url_or_filename):
         
     | 
| 217 | 
         
            +
                if is_url(url_or_filename):
         
     | 
| 218 | 
         
            +
                    cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
         
     | 
| 219 | 
         
            +
                    checkpoint = torch.load(cached_file, map_location='cpu') 
         
     | 
| 220 | 
         
            +
                elif os.path.isfile(url_or_filename):        
         
     | 
| 221 | 
         
            +
                    checkpoint = torch.load(url_or_filename, map_location='cpu') 
         
     | 
| 222 | 
         
            +
                else:
         
     | 
| 223 | 
         
            +
                    raise RuntimeError('checkpoint url or path is invalid')
         
     | 
| 224 | 
         
            +
                    
         
     | 
| 225 | 
         
            +
                state_dict = checkpoint['model']
         
     | 
| 226 | 
         
            +
                
         
     | 
| 227 | 
         
            +
                state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder) 
         
     | 
| 228 | 
         
            +
                if 'visual_encoder_m.pos_embed' in model.state_dict().keys():
         
     | 
| 229 | 
         
            +
                    state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'],
         
     | 
| 230 | 
         
            +
                                                                                     model.visual_encoder_m)    
         
     | 
| 231 | 
         
            +
                for key in model.state_dict().keys():
         
     | 
| 232 | 
         
            +
                    if key in state_dict.keys():
         
     | 
| 233 | 
         
            +
                        if state_dict[key].shape!=model.state_dict()[key].shape:
         
     | 
| 234 | 
         
            +
                            del state_dict[key]
         
     | 
| 235 | 
         
            +
                
         
     | 
| 236 | 
         
            +
                msg = model.load_state_dict(state_dict,strict=False)
         
     | 
| 237 | 
         
            +
                print('load checkpoint from %s'%url_or_filename)  
         
     | 
| 238 | 
         
            +
                return model,msg
         
     | 
| 239 | 
         
            +
                
         
     | 
    	
        extras/BLIP/models/blip_itm.py
    ADDED
    
    | 
         @@ -0,0 +1,76 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from extras.BLIP.models.med import BertConfig, BertModel
         
     | 
| 2 | 
         
            +
            from transformers import BertTokenizer
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            import torch
         
     | 
| 5 | 
         
            +
            from torch import nn
         
     | 
| 6 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            from extras.BLIP.models.blip import create_vit, init_tokenizer, load_checkpoint
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            class BLIP_ITM(nn.Module):
         
     | 
| 11 | 
         
            +
                def __init__(self,                 
         
     | 
| 12 | 
         
            +
                             med_config = 'configs/med_config.json',  
         
     | 
| 13 | 
         
            +
                             image_size = 384,
         
     | 
| 14 | 
         
            +
                             vit = 'base',
         
     | 
| 15 | 
         
            +
                             vit_grad_ckpt = False,
         
     | 
| 16 | 
         
            +
                             vit_ckpt_layer = 0,                      
         
     | 
| 17 | 
         
            +
                             embed_dim = 256,     
         
     | 
| 18 | 
         
            +
                             ):
         
     | 
| 19 | 
         
            +
                    """
         
     | 
| 20 | 
         
            +
                    Args:
         
     | 
| 21 | 
         
            +
                        med_config (str): path for the mixture of encoder-decoder model's configuration file
         
     | 
| 22 | 
         
            +
                        image_size (int): input image size
         
     | 
| 23 | 
         
            +
                        vit (str): model size of vision transformer
         
     | 
| 24 | 
         
            +
                    """               
         
     | 
| 25 | 
         
            +
                    super().__init__()
         
     | 
| 26 | 
         
            +
                    
         
     | 
| 27 | 
         
            +
                    self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
         
     | 
| 28 | 
         
            +
                    self.tokenizer = init_tokenizer()   
         
     | 
| 29 | 
         
            +
                    med_config = BertConfig.from_json_file(med_config)
         
     | 
| 30 | 
         
            +
                    med_config.encoder_width = vision_width
         
     | 
| 31 | 
         
            +
                    self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)          
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
                    text_width = self.text_encoder.config.hidden_size
         
     | 
| 34 | 
         
            +
                    
         
     | 
| 35 | 
         
            +
                    self.vision_proj = nn.Linear(vision_width, embed_dim)
         
     | 
| 36 | 
         
            +
                    self.text_proj = nn.Linear(text_width, embed_dim)
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
                    self.itm_head = nn.Linear(text_width, 2) 
         
     | 
| 39 | 
         
            +
                    
         
     | 
| 40 | 
         
            +
                    
         
     | 
| 41 | 
         
            +
                def forward(self, image, caption, match_head='itm'):
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
                    image_embeds = self.visual_encoder(image) 
         
     | 
| 44 | 
         
            +
                    image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)        
         
     | 
| 45 | 
         
            +
                  
         
     | 
| 46 | 
         
            +
                    text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=35, 
         
     | 
| 47 | 
         
            +
                                          return_tensors="pt").to(image.device) 
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
                             
         
     | 
| 50 | 
         
            +
                    if match_head=='itm':
         
     | 
| 51 | 
         
            +
                        output = self.text_encoder(text.input_ids,
         
     | 
| 52 | 
         
            +
                                                   attention_mask = text.attention_mask,
         
     | 
| 53 | 
         
            +
                                                   encoder_hidden_states = image_embeds,
         
     | 
| 54 | 
         
            +
                                                   encoder_attention_mask = image_atts,      
         
     | 
| 55 | 
         
            +
                                                   return_dict = True,
         
     | 
| 56 | 
         
            +
                                                  )
         
     | 
| 57 | 
         
            +
                        itm_output = self.itm_head(output.last_hidden_state[:,0,:])     
         
     | 
| 58 | 
         
            +
                        return itm_output
         
     | 
| 59 | 
         
            +
                        
         
     | 
| 60 | 
         
            +
                    elif match_head=='itc':
         
     | 
| 61 | 
         
            +
                        text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,                      
         
     | 
| 62 | 
         
            +
                                                        return_dict = True, mode = 'text')                     
         
     | 
| 63 | 
         
            +
                        image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)   
         
     | 
| 64 | 
         
            +
                        text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1)    
         
     | 
| 65 | 
         
            +
                        
         
     | 
| 66 | 
         
            +
                        sim = image_feat @ text_feat.t()
         
     | 
| 67 | 
         
            +
                        return sim
         
     | 
| 68 | 
         
            +
                    
         
     | 
| 69 | 
         
            +
                    
         
     | 
| 70 | 
         
            +
            def blip_itm(pretrained='',**kwargs):
         
     | 
| 71 | 
         
            +
                model = BLIP_ITM(**kwargs)
         
     | 
| 72 | 
         
            +
                if pretrained:
         
     | 
| 73 | 
         
            +
                    model,msg = load_checkpoint(model,pretrained)
         
     | 
| 74 | 
         
            +
                    assert(len(msg.missing_keys)==0)
         
     | 
| 75 | 
         
            +
                return model         
         
     | 
| 76 | 
         
            +
                        
         
     | 
    	
        extras/BLIP/models/blip_nlvr.py
    ADDED
    
    | 
         @@ -0,0 +1,105 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from extras.BLIP.models.med import BertConfig
         
     | 
| 2 | 
         
            +
            from extras.BLIP.models.nlvr_encoder import BertModel
         
     | 
| 3 | 
         
            +
            from extras.BLIP.models.vit import interpolate_pos_embed
         
     | 
| 4 | 
         
            +
            from extras.BLIP.models.blip import create_vit, init_tokenizer, is_url
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            from timm.models.hub import download_cached_file
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            import torch
         
     | 
| 9 | 
         
            +
            from torch import nn
         
     | 
| 10 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 11 | 
         
            +
            from transformers import BertTokenizer
         
     | 
| 12 | 
         
            +
            import numpy as np
         
     | 
| 13 | 
         
            +
            import os
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            class BLIP_NLVR(nn.Module):
         
     | 
| 17 | 
         
            +
                def __init__(self,                 
         
     | 
| 18 | 
         
            +
                             med_config = 'configs/med_config.json',  
         
     | 
| 19 | 
         
            +
                             image_size = 480,
         
     | 
| 20 | 
         
            +
                             vit = 'base',
         
     | 
| 21 | 
         
            +
                             vit_grad_ckpt = False,
         
     | 
| 22 | 
         
            +
                             vit_ckpt_layer = 0,                   
         
     | 
| 23 | 
         
            +
                             ):
         
     | 
| 24 | 
         
            +
                    """
         
     | 
| 25 | 
         
            +
                    Args:
         
     | 
| 26 | 
         
            +
                        med_config (str): path for the mixture of encoder-decoder model's configuration file
         
     | 
| 27 | 
         
            +
                        image_size (int): input image size
         
     | 
| 28 | 
         
            +
                        vit (str): model size of vision transformer
         
     | 
| 29 | 
         
            +
                    """               
         
     | 
| 30 | 
         
            +
                    super().__init__()
         
     | 
| 31 | 
         
            +
                    
         
     | 
| 32 | 
         
            +
                    self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer, drop_path_rate=0.1)
         
     | 
| 33 | 
         
            +
                    self.tokenizer = init_tokenizer()   
         
     | 
| 34 | 
         
            +
                    med_config = BertConfig.from_json_file(med_config)
         
     | 
| 35 | 
         
            +
                    med_config.encoder_width = vision_width
         
     | 
| 36 | 
         
            +
                    self.text_encoder = BertModel(config=med_config, add_pooling_layer=False) 
         
     | 
| 37 | 
         
            +
                                
         
     | 
| 38 | 
         
            +
                    self.cls_head = nn.Sequential(
         
     | 
| 39 | 
         
            +
                              nn.Linear(self.text_encoder.config.hidden_size, self.text_encoder.config.hidden_size),
         
     | 
| 40 | 
         
            +
                              nn.ReLU(),
         
     | 
| 41 | 
         
            +
                              nn.Linear(self.text_encoder.config.hidden_size, 2)
         
     | 
| 42 | 
         
            +
                            )  
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
                def forward(self, image, text, targets, train=True):
         
     | 
| 45 | 
         
            +
                    
         
     | 
| 46 | 
         
            +
                    image_embeds = self.visual_encoder(image) 
         
     | 
| 47 | 
         
            +
                    image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)        
         
     | 
| 48 | 
         
            +
                    image0_embeds, image1_embeds = torch.split(image_embeds,targets.size(0))     
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
                    text = self.tokenizer(text, padding='longest', return_tensors="pt").to(image.device) 
         
     | 
| 51 | 
         
            +
                    text.input_ids[:,0] = self.tokenizer.enc_token_id        
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
                    output = self.text_encoder(text.input_ids, 
         
     | 
| 54 | 
         
            +
                                               attention_mask = text.attention_mask, 
         
     | 
| 55 | 
         
            +
                                               encoder_hidden_states = [image0_embeds,image1_embeds],
         
     | 
| 56 | 
         
            +
                                               encoder_attention_mask = [image_atts[:image0_embeds.size(0)],
         
     | 
| 57 | 
         
            +
                                                                         image_atts[image0_embeds.size(0):]],        
         
     | 
| 58 | 
         
            +
                                               return_dict = True,
         
     | 
| 59 | 
         
            +
                                              )  
         
     | 
| 60 | 
         
            +
                    hidden_state = output.last_hidden_state[:,0,:]        
         
     | 
| 61 | 
         
            +
                    prediction = self.cls_head(hidden_state)
         
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
                    if train:            
         
     | 
| 64 | 
         
            +
                        loss = F.cross_entropy(prediction, targets)   
         
     | 
| 65 | 
         
            +
                        return loss
         
     | 
| 66 | 
         
            +
                    else:
         
     | 
| 67 | 
         
            +
                        return prediction
         
     | 
| 68 | 
         
            +
                
         
     | 
| 69 | 
         
            +
            def blip_nlvr(pretrained='',**kwargs):
         
     | 
| 70 | 
         
            +
                model = BLIP_NLVR(**kwargs)
         
     | 
| 71 | 
         
            +
                if pretrained:
         
     | 
| 72 | 
         
            +
                    model,msg = load_checkpoint(model,pretrained)
         
     | 
| 73 | 
         
            +
                    print("missing keys:")
         
     | 
| 74 | 
         
            +
                    print(msg.missing_keys)
         
     | 
| 75 | 
         
            +
                return model  
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
                    
         
     | 
| 78 | 
         
            +
            def load_checkpoint(model,url_or_filename):
         
     | 
| 79 | 
         
            +
                if is_url(url_or_filename):
         
     | 
| 80 | 
         
            +
                    cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True)
         
     | 
| 81 | 
         
            +
                    checkpoint = torch.load(cached_file, map_location='cpu') 
         
     | 
| 82 | 
         
            +
                elif os.path.isfile(url_or_filename):        
         
     | 
| 83 | 
         
            +
                    checkpoint = torch.load(url_or_filename, map_location='cpu') 
         
     | 
| 84 | 
         
            +
                else:
         
     | 
| 85 | 
         
            +
                    raise RuntimeError('checkpoint url or path is invalid')
         
     | 
| 86 | 
         
            +
                state_dict = checkpoint['model']
         
     | 
| 87 | 
         
            +
                
         
     | 
| 88 | 
         
            +
                state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder) 
         
     | 
| 89 | 
         
            +
                
         
     | 
| 90 | 
         
            +
                for key in list(state_dict.keys()):
         
     | 
| 91 | 
         
            +
                    if 'crossattention.self.' in key:
         
     | 
| 92 | 
         
            +
                        new_key0 = key.replace('self','self0')
         
     | 
| 93 | 
         
            +
                        new_key1 = key.replace('self','self1')
         
     | 
| 94 | 
         
            +
                        state_dict[new_key0] = state_dict[key]
         
     | 
| 95 | 
         
            +
                        state_dict[new_key1] = state_dict[key]
         
     | 
| 96 | 
         
            +
                    elif 'crossattention.output.dense.' in key:
         
     | 
| 97 | 
         
            +
                        new_key0 = key.replace('dense','dense0')
         
     | 
| 98 | 
         
            +
                        new_key1 = key.replace('dense','dense1')
         
     | 
| 99 | 
         
            +
                        state_dict[new_key0] = state_dict[key]
         
     | 
| 100 | 
         
            +
                        state_dict[new_key1] = state_dict[key]  
         
     | 
| 101 | 
         
            +
                            
         
     | 
| 102 | 
         
            +
                msg = model.load_state_dict(state_dict,strict=False)
         
     | 
| 103 | 
         
            +
                print('load checkpoint from %s'%url_or_filename)  
         
     | 
| 104 | 
         
            +
                return model,msg
         
     | 
| 105 | 
         
            +
                        
         
     | 
    	
        extras/BLIP/models/blip_pretrain.py
    ADDED
    
    | 
         @@ -0,0 +1,339 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            '''
         
     | 
| 2 | 
         
            +
             * Copyright (c) 2022, salesforce.com, inc.
         
     | 
| 3 | 
         
            +
             * All rights reserved.
         
     | 
| 4 | 
         
            +
             * SPDX-License-Identifier: BSD-3-Clause
         
     | 
| 5 | 
         
            +
             * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
         
     | 
| 6 | 
         
            +
             * By Junnan Li
         
     | 
| 7 | 
         
            +
            '''
         
     | 
| 8 | 
         
            +
            from extras.BLIP.models.med import BertConfig, BertModel, BertLMHeadModel
         
     | 
| 9 | 
         
            +
            from transformers import BertTokenizer
         
     | 
| 10 | 
         
            +
            import transformers
         
     | 
| 11 | 
         
            +
            transformers.logging.set_verbosity_error()
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            import torch
         
     | 
| 14 | 
         
            +
            from torch import nn
         
     | 
| 15 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            from extras.BLIP.models.blip import create_vit, init_tokenizer, load_checkpoint
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            class BLIP_Pretrain(nn.Module):
         
     | 
| 20 | 
         
            +
                def __init__(self,                 
         
     | 
| 21 | 
         
            +
                             med_config = 'configs/bert_config.json',  
         
     | 
| 22 | 
         
            +
                             image_size = 224,
         
     | 
| 23 | 
         
            +
                             vit = 'base',
         
     | 
| 24 | 
         
            +
                             vit_grad_ckpt = False,
         
     | 
| 25 | 
         
            +
                             vit_ckpt_layer = 0,                    
         
     | 
| 26 | 
         
            +
                             embed_dim = 256,     
         
     | 
| 27 | 
         
            +
                             queue_size = 57600,
         
     | 
| 28 | 
         
            +
                             momentum = 0.995,
         
     | 
| 29 | 
         
            +
                             ):
         
     | 
| 30 | 
         
            +
                    """
         
     | 
| 31 | 
         
            +
                    Args:
         
     | 
| 32 | 
         
            +
                        med_config (str): path for the mixture of encoder-decoder model's configuration file
         
     | 
| 33 | 
         
            +
                        image_size (int): input image size
         
     | 
| 34 | 
         
            +
                        vit (str): model size of vision transformer
         
     | 
| 35 | 
         
            +
                    """               
         
     | 
| 36 | 
         
            +
                    super().__init__()
         
     | 
| 37 | 
         
            +
                    
         
     | 
| 38 | 
         
            +
                    self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer, 0)
         
     | 
| 39 | 
         
            +
                    
         
     | 
| 40 | 
         
            +
                    if vit=='base':
         
     | 
| 41 | 
         
            +
                        checkpoint = torch.hub.load_state_dict_from_url(
         
     | 
| 42 | 
         
            +
                            url="https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth",
         
     | 
| 43 | 
         
            +
                            map_location="cpu", check_hash=True)
         
     | 
| 44 | 
         
            +
                        state_dict = checkpoint["model"]     
         
     | 
| 45 | 
         
            +
                        msg = self.visual_encoder.load_state_dict(state_dict,strict=False)
         
     | 
| 46 | 
         
            +
                    elif vit=='large':
         
     | 
| 47 | 
         
            +
                        from timm.models.helpers import load_custom_pretrained
         
     | 
| 48 | 
         
            +
                        from timm.models.vision_transformer import default_cfgs
         
     | 
| 49 | 
         
            +
                        load_custom_pretrained(self.visual_encoder,default_cfgs['vit_large_patch16_224_in21k'])        
         
     | 
| 50 | 
         
            +
                           
         
     | 
| 51 | 
         
            +
                    self.tokenizer = init_tokenizer()   
         
     | 
| 52 | 
         
            +
                    encoder_config = BertConfig.from_json_file(med_config)
         
     | 
| 53 | 
         
            +
                    encoder_config.encoder_width = vision_width
         
     | 
| 54 | 
         
            +
                    self.text_encoder = BertModel.from_pretrained('bert-base-uncased',config=encoder_config, add_pooling_layer=False)
         
     | 
| 55 | 
         
            +
                    self.text_encoder.resize_token_embeddings(len(self.tokenizer)) 
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
                    text_width = self.text_encoder.config.hidden_size
         
     | 
| 58 | 
         
            +
                    
         
     | 
| 59 | 
         
            +
                    self.vision_proj = nn.Linear(vision_width, embed_dim)
         
     | 
| 60 | 
         
            +
                    self.text_proj = nn.Linear(text_width, embed_dim)
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                    self.itm_head = nn.Linear(text_width, 2) 
         
     | 
| 63 | 
         
            +
                    
         
     | 
| 64 | 
         
            +
                    # create momentum encoders  
         
     | 
| 65 | 
         
            +
                    self.visual_encoder_m, vision_width = create_vit(vit,image_size)              
         
     | 
| 66 | 
         
            +
                    self.vision_proj_m = nn.Linear(vision_width, embed_dim)
         
     | 
| 67 | 
         
            +
                    self.text_encoder_m = BertModel(config=encoder_config, add_pooling_layer=False)      
         
     | 
| 68 | 
         
            +
                    self.text_proj_m = nn.Linear(text_width, embed_dim)
         
     | 
| 69 | 
         
            +
                    
         
     | 
| 70 | 
         
            +
                    self.model_pairs = [[self.visual_encoder,self.visual_encoder_m],
         
     | 
| 71 | 
         
            +
                                        [self.vision_proj,self.vision_proj_m],
         
     | 
| 72 | 
         
            +
                                        [self.text_encoder,self.text_encoder_m],
         
     | 
| 73 | 
         
            +
                                        [self.text_proj,self.text_proj_m],
         
     | 
| 74 | 
         
            +
                                       ]       
         
     | 
| 75 | 
         
            +
                    self.copy_params()
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
                    # create the queue
         
     | 
| 78 | 
         
            +
                    self.register_buffer("image_queue", torch.randn(embed_dim, queue_size))
         
     | 
| 79 | 
         
            +
                    self.register_buffer("text_queue", torch.randn(embed_dim, queue_size))
         
     | 
| 80 | 
         
            +
                    self.register_buffer("queue_ptr", torch.zeros(1, dtype=torch.long))  
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
                    self.image_queue = nn.functional.normalize(self.image_queue, dim=0)
         
     | 
| 83 | 
         
            +
                    self.text_queue = nn.functional.normalize(self.text_queue, dim=0)
         
     | 
| 84 | 
         
            +
                    
         
     | 
| 85 | 
         
            +
                    self.queue_size = queue_size
         
     | 
| 86 | 
         
            +
                    self.momentum = momentum
         
     | 
| 87 | 
         
            +
                    self.temp = nn.Parameter(0.07*torch.ones([]))   
         
     | 
| 88 | 
         
            +
                    
         
     | 
| 89 | 
         
            +
                    # create the decoder
         
     | 
| 90 | 
         
            +
                    decoder_config = BertConfig.from_json_file(med_config)
         
     | 
| 91 | 
         
            +
                    decoder_config.encoder_width = vision_width        
         
     | 
| 92 | 
         
            +
                    self.text_decoder = BertLMHeadModel.from_pretrained('bert-base-uncased',config=decoder_config)    
         
     | 
| 93 | 
         
            +
                    self.text_decoder.resize_token_embeddings(len(self.tokenizer)) 
         
     | 
| 94 | 
         
            +
                    tie_encoder_decoder_weights(self.text_encoder,self.text_decoder.bert,'','/attention')
         
     | 
| 95 | 
         
            +
                    
         
     | 
| 96 | 
         
            +
                    
         
     | 
| 97 | 
         
            +
                def forward(self, image, caption, alpha):
         
     | 
| 98 | 
         
            +
                    with torch.no_grad():
         
     | 
| 99 | 
         
            +
                        self.temp.clamp_(0.001,0.5)
         
     | 
| 100 | 
         
            +
                    
         
     | 
| 101 | 
         
            +
                    image_embeds = self.visual_encoder(image) 
         
     | 
| 102 | 
         
            +
                    image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)        
         
     | 
| 103 | 
         
            +
                    image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)          
         
     | 
| 104 | 
         
            +
                    
         
     | 
| 105 | 
         
            +
                    text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=30, 
         
     | 
| 106 | 
         
            +
                                          return_tensors="pt").to(image.device)  
         
     | 
| 107 | 
         
            +
                    text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,                      
         
     | 
| 108 | 
         
            +
                                                    return_dict = True, mode = 'text')            
         
     | 
| 109 | 
         
            +
                    text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1)                 
         
     | 
| 110 | 
         
            +
                         
         
     | 
| 111 | 
         
            +
                    # get momentum features
         
     | 
| 112 | 
         
            +
                    with torch.no_grad():
         
     | 
| 113 | 
         
            +
                        self._momentum_update()
         
     | 
| 114 | 
         
            +
                        image_embeds_m = self.visual_encoder_m(image) 
         
     | 
| 115 | 
         
            +
                        image_feat_m = F.normalize(self.vision_proj_m(image_embeds_m[:,0,:]),dim=-1)  
         
     | 
| 116 | 
         
            +
                        image_feat_all = torch.cat([image_feat_m.t(),self.image_queue.clone().detach()],dim=1)                   
         
     | 
| 117 | 
         
            +
                        
         
     | 
| 118 | 
         
            +
                        text_output_m = self.text_encoder_m(text.input_ids, attention_mask = text.attention_mask,                      
         
     | 
| 119 | 
         
            +
                                                            return_dict = True, mode = 'text')    
         
     | 
| 120 | 
         
            +
                        text_feat_m = F.normalize(self.text_proj_m(text_output_m.last_hidden_state[:,0,:]),dim=-1) 
         
     | 
| 121 | 
         
            +
                        text_feat_all = torch.cat([text_feat_m.t(),self.text_queue.clone().detach()],dim=1)
         
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
                        sim_i2t_m = image_feat_m @ text_feat_all / self.temp  
         
     | 
| 124 | 
         
            +
                        sim_t2i_m = text_feat_m @ image_feat_all / self.temp 
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
                        sim_targets = torch.zeros(sim_i2t_m.size()).to(image.device)
         
     | 
| 127 | 
         
            +
                        sim_targets.fill_diagonal_(1)          
         
     | 
| 128 | 
         
            +
             
     | 
| 129 | 
         
            +
                        sim_i2t_targets = alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets
         
     | 
| 130 | 
         
            +
                        sim_t2i_targets = alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets        
         
     | 
| 131 | 
         
            +
             
     | 
| 132 | 
         
            +
                    sim_i2t = image_feat @ text_feat_all / self.temp
         
     | 
| 133 | 
         
            +
                    sim_t2i = text_feat @ image_feat_all / self.temp
         
     | 
| 134 | 
         
            +
                                         
         
     | 
| 135 | 
         
            +
                    loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1)*sim_i2t_targets,dim=1).mean()
         
     | 
| 136 | 
         
            +
                    loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1)*sim_t2i_targets,dim=1).mean() 
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
                    loss_ita = (loss_i2t+loss_t2i)/2
         
     | 
| 139 | 
         
            +
             
     | 
| 140 | 
         
            +
                    self._dequeue_and_enqueue(image_feat_m, text_feat_m)        
         
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
                    ###============== Image-text Matching ===================###
         
     | 
| 143 | 
         
            +
                    encoder_input_ids = text.input_ids.clone()
         
     | 
| 144 | 
         
            +
                    encoder_input_ids[:,0] = self.tokenizer.enc_token_id
         
     | 
| 145 | 
         
            +
                    
         
     | 
| 146 | 
         
            +
                    # forward the positve image-text pair
         
     | 
| 147 | 
         
            +
                    bs = image.size(0)
         
     | 
| 148 | 
         
            +
                    output_pos = self.text_encoder(encoder_input_ids,
         
     | 
| 149 | 
         
            +
                                                   attention_mask = text.attention_mask,
         
     | 
| 150 | 
         
            +
                                                   encoder_hidden_states = image_embeds,
         
     | 
| 151 | 
         
            +
                                                   encoder_attention_mask = image_atts,      
         
     | 
| 152 | 
         
            +
                                                   return_dict = True,
         
     | 
| 153 | 
         
            +
                                                  )            
         
     | 
| 154 | 
         
            +
                    with torch.no_grad():       
         
     | 
| 155 | 
         
            +
                        weights_t2i = F.softmax(sim_t2i[:,:bs],dim=1)+1e-4 
         
     | 
| 156 | 
         
            +
                        weights_t2i.fill_diagonal_(0)            
         
     | 
| 157 | 
         
            +
                        weights_i2t = F.softmax(sim_i2t[:,:bs],dim=1)+1e-4  
         
     | 
| 158 | 
         
            +
                        weights_i2t.fill_diagonal_(0)   
         
     | 
| 159 | 
         
            +
                        
         
     | 
| 160 | 
         
            +
                    # select a negative image for each text
         
     | 
| 161 | 
         
            +
                    image_embeds_neg = []    
         
     | 
| 162 | 
         
            +
                    for b in range(bs):
         
     | 
| 163 | 
         
            +
                        neg_idx = torch.multinomial(weights_t2i[b], 1).item()
         
     | 
| 164 | 
         
            +
                        image_embeds_neg.append(image_embeds[neg_idx])
         
     | 
| 165 | 
         
            +
                    image_embeds_neg = torch.stack(image_embeds_neg,dim=0)   
         
     | 
| 166 | 
         
            +
             
     | 
| 167 | 
         
            +
                    # select a negative text for each image
         
     | 
| 168 | 
         
            +
                    text_ids_neg = []
         
     | 
| 169 | 
         
            +
                    text_atts_neg = []
         
     | 
| 170 | 
         
            +
                    for b in range(bs):
         
     | 
| 171 | 
         
            +
                        neg_idx = torch.multinomial(weights_i2t[b], 1).item()
         
     | 
| 172 | 
         
            +
                        text_ids_neg.append(encoder_input_ids[neg_idx])
         
     | 
| 173 | 
         
            +
                        text_atts_neg.append(text.attention_mask[neg_idx])
         
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
                    text_ids_neg = torch.stack(text_ids_neg,dim=0)   
         
     | 
| 176 | 
         
            +
                    text_atts_neg = torch.stack(text_atts_neg,dim=0)      
         
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
                    text_ids_all = torch.cat([encoder_input_ids, text_ids_neg],dim=0)     
         
     | 
| 179 | 
         
            +
                    text_atts_all = torch.cat([text.attention_mask, text_atts_neg],dim=0)     
         
     | 
| 180 | 
         
            +
             
     | 
| 181 | 
         
            +
                    image_embeds_all = torch.cat([image_embeds_neg,image_embeds],dim=0)
         
     | 
| 182 | 
         
            +
                    image_atts_all = torch.cat([image_atts,image_atts],dim=0)
         
     | 
| 183 | 
         
            +
             
     | 
| 184 | 
         
            +
                    output_neg = self.text_encoder(text_ids_all,
         
     | 
| 185 | 
         
            +
                                                   attention_mask = text_atts_all,
         
     | 
| 186 | 
         
            +
                                                   encoder_hidden_states = image_embeds_all,
         
     | 
| 187 | 
         
            +
                                                   encoder_attention_mask = image_atts_all,      
         
     | 
| 188 | 
         
            +
                                                   return_dict = True,
         
     | 
| 189 | 
         
            +
                                                  )                            
         
     | 
| 190 | 
         
            +
             
     | 
| 191 | 
         
            +
                    vl_embeddings = torch.cat([output_pos.last_hidden_state[:,0,:], output_neg.last_hidden_state[:,0,:]],dim=0)
         
     | 
| 192 | 
         
            +
                    vl_output = self.itm_head(vl_embeddings)            
         
     | 
| 193 | 
         
            +
             
     | 
| 194 | 
         
            +
                    itm_labels = torch.cat([torch.ones(bs,dtype=torch.long),torch.zeros(2*bs,dtype=torch.long)],
         
     | 
| 195 | 
         
            +
                                           dim=0).to(image.device)
         
     | 
| 196 | 
         
            +
                    loss_itm = F.cross_entropy(vl_output, itm_labels)  
         
     | 
| 197 | 
         
            +
                    
         
     | 
| 198 | 
         
            +
                    ##================= LM ========================##     
         
     | 
| 199 | 
         
            +
                    decoder_input_ids = text.input_ids.clone()      
         
     | 
| 200 | 
         
            +
                    decoder_input_ids[:,0] = self.tokenizer.bos_token_id
         
     | 
| 201 | 
         
            +
                    decoder_targets = decoder_input_ids.masked_fill(decoder_input_ids == self.tokenizer.pad_token_id, -100) 
         
     | 
| 202 | 
         
            +
             
     | 
| 203 | 
         
            +
                    decoder_output = self.text_decoder(decoder_input_ids, 
         
     | 
| 204 | 
         
            +
                                                       attention_mask = text.attention_mask, 
         
     | 
| 205 | 
         
            +
                                                       encoder_hidden_states = image_embeds,
         
     | 
| 206 | 
         
            +
                                                       encoder_attention_mask = image_atts,                  
         
     | 
| 207 | 
         
            +
                                                       labels = decoder_targets,
         
     | 
| 208 | 
         
            +
                                                       return_dict = True,   
         
     | 
| 209 | 
         
            +
                                                      )   
         
     | 
| 210 | 
         
            +
                      
         
     | 
| 211 | 
         
            +
                    loss_lm = decoder_output.loss                
         
     | 
| 212 | 
         
            +
                    return loss_ita, loss_itm, loss_lm
         
     | 
| 213 | 
         
            +
             
         
     | 
| 214 | 
         
            +
             
     | 
| 215 | 
         
            +
             
     | 
| 216 | 
         
            +
                @torch.no_grad()    
         
     | 
| 217 | 
         
            +
                def copy_params(self):
         
     | 
| 218 | 
         
            +
                    for model_pair in self.model_pairs:           
         
     | 
| 219 | 
         
            +
                        for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
         
     | 
| 220 | 
         
            +
                            param_m.data.copy_(param.data)  # initialize
         
     | 
| 221 | 
         
            +
                            param_m.requires_grad = False  # not update by gradient    
         
     | 
| 222 | 
         
            +
             
     | 
| 223 | 
         
            +
                        
         
     | 
| 224 | 
         
            +
                @torch.no_grad()        
         
     | 
| 225 | 
         
            +
                def _momentum_update(self):
         
     | 
| 226 | 
         
            +
                    for model_pair in self.model_pairs:           
         
     | 
| 227 | 
         
            +
                        for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
         
     | 
| 228 | 
         
            +
                            param_m.data = param_m.data * self.momentum + param.data * (1. - self.momentum)
         
     | 
| 229 | 
         
            +
             
     | 
| 230 | 
         
            +
                                    
         
     | 
| 231 | 
         
            +
                @torch.no_grad()
         
     | 
| 232 | 
         
            +
                def _dequeue_and_enqueue(self, image_feat, text_feat):
         
     | 
| 233 | 
         
            +
                    # gather keys before updating queue
         
     | 
| 234 | 
         
            +
                    image_feats = concat_all_gather(image_feat)
         
     | 
| 235 | 
         
            +
                    text_feats = concat_all_gather(text_feat)
         
     | 
| 236 | 
         
            +
             
     | 
| 237 | 
         
            +
                    batch_size = image_feats.shape[0]
         
     | 
| 238 | 
         
            +
             
     | 
| 239 | 
         
            +
                    ptr = int(self.queue_ptr)
         
     | 
| 240 | 
         
            +
                    assert self.queue_size % batch_size == 0  # for simplicity
         
     | 
| 241 | 
         
            +
             
     | 
| 242 | 
         
            +
                    # replace the keys at ptr (dequeue and enqueue)
         
     | 
| 243 | 
         
            +
                    self.image_queue[:, ptr:ptr + batch_size] = image_feats.T
         
     | 
| 244 | 
         
            +
                    self.text_queue[:, ptr:ptr + batch_size] = text_feats.T
         
     | 
| 245 | 
         
            +
                    ptr = (ptr + batch_size) % self.queue_size  # move pointer
         
     | 
| 246 | 
         
            +
             
     | 
| 247 | 
         
            +
                    self.queue_ptr[0] = ptr 
         
     | 
| 248 | 
         
            +
             
     | 
| 249 | 
         
            +
             
     | 
| 250 | 
         
            +
            def blip_pretrain(**kwargs):
         
     | 
| 251 | 
         
            +
                model = BLIP_Pretrain(**kwargs)
         
     | 
| 252 | 
         
            +
                return model 
         
     | 
| 253 | 
         
            +
             
     | 
| 254 | 
         
            +
             
     | 
| 255 | 
         
            +
            @torch.no_grad()
         
     | 
| 256 | 
         
            +
            def concat_all_gather(tensor):
         
     | 
| 257 | 
         
            +
                """
         
     | 
| 258 | 
         
            +
                Performs all_gather operation on the provided tensors.
         
     | 
| 259 | 
         
            +
                *** Warning ***: torch.distributed.all_gather has no gradient.
         
     | 
| 260 | 
         
            +
                """
         
     | 
| 261 | 
         
            +
                tensors_gather = [torch.ones_like(tensor)
         
     | 
| 262 | 
         
            +
                    for _ in range(torch.distributed.get_world_size())]
         
     | 
| 263 | 
         
            +
                torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
         
     | 
| 264 | 
         
            +
             
     | 
| 265 | 
         
            +
                output = torch.cat(tensors_gather, dim=0)
         
     | 
| 266 | 
         
            +
                return output     
         
     | 
| 267 | 
         
            +
             
     | 
| 268 | 
         
            +
             
     | 
| 269 | 
         
            +
            from typing import List
         
     | 
| 270 | 
         
            +
            def tie_encoder_decoder_weights(encoder: nn.Module, decoder: nn.Module, base_model_prefix: str, skip_key:str):
         
     | 
| 271 | 
         
            +
                uninitialized_encoder_weights: List[str] = []
         
     | 
| 272 | 
         
            +
                if decoder.__class__ != encoder.__class__:
         
     | 
| 273 | 
         
            +
                    print(
         
     | 
| 274 | 
         
            +
                        f"{decoder.__class__} and {encoder.__class__} are not equal. In this case make sure that all encoder weights are correctly initialized."
         
     | 
| 275 | 
         
            +
                    )
         
     | 
| 276 | 
         
            +
             
     | 
| 277 | 
         
            +
                def tie_encoder_to_decoder_recursively(
         
     | 
| 278 | 
         
            +
                    decoder_pointer: nn.Module,
         
     | 
| 279 | 
         
            +
                    encoder_pointer: nn.Module,
         
     | 
| 280 | 
         
            +
                    module_name: str,
         
     | 
| 281 | 
         
            +
                    uninitialized_encoder_weights: List[str],
         
     | 
| 282 | 
         
            +
                    skip_key: str,
         
     | 
| 283 | 
         
            +
                    depth=0,
         
     | 
| 284 | 
         
            +
                ):
         
     | 
| 285 | 
         
            +
                    assert isinstance(decoder_pointer, nn.Module) and isinstance(
         
     | 
| 286 | 
         
            +
                        encoder_pointer, nn.Module
         
     | 
| 287 | 
         
            +
                    ), f"{decoder_pointer} and {encoder_pointer} have to be of type torch.nn.Module"
         
     | 
| 288 | 
         
            +
                    if hasattr(decoder_pointer, "weight") and skip_key not in module_name:
         
     | 
| 289 | 
         
            +
                        assert hasattr(encoder_pointer, "weight")
         
     | 
| 290 | 
         
            +
                        encoder_pointer.weight = decoder_pointer.weight
         
     | 
| 291 | 
         
            +
                        if hasattr(decoder_pointer, "bias"):
         
     | 
| 292 | 
         
            +
                            assert hasattr(encoder_pointer, "bias")
         
     | 
| 293 | 
         
            +
                            encoder_pointer.bias = decoder_pointer.bias                
         
     | 
| 294 | 
         
            +
                        print(module_name+' is tied')    
         
     | 
| 295 | 
         
            +
                        return
         
     | 
| 296 | 
         
            +
             
     | 
| 297 | 
         
            +
                    encoder_modules = encoder_pointer._modules
         
     | 
| 298 | 
         
            +
                    decoder_modules = decoder_pointer._modules
         
     | 
| 299 | 
         
            +
                    if len(decoder_modules) > 0:
         
     | 
| 300 | 
         
            +
                        assert (
         
     | 
| 301 | 
         
            +
                            len(encoder_modules) > 0
         
     | 
| 302 | 
         
            +
                        ), f"Encoder module {encoder_pointer} does not match decoder module {decoder_pointer}"
         
     | 
| 303 | 
         
            +
             
     | 
| 304 | 
         
            +
                        all_encoder_weights = set([module_name + "/" + sub_name for sub_name in encoder_modules.keys()])
         
     | 
| 305 | 
         
            +
                        encoder_layer_pos = 0
         
     | 
| 306 | 
         
            +
                        for name, module in decoder_modules.items():
         
     | 
| 307 | 
         
            +
                            if name.isdigit():
         
     | 
| 308 | 
         
            +
                                encoder_name = str(int(name) + encoder_layer_pos)
         
     | 
| 309 | 
         
            +
                                decoder_name = name
         
     | 
| 310 | 
         
            +
                                if not isinstance(decoder_modules[decoder_name], type(encoder_modules[encoder_name])) and len(
         
     | 
| 311 | 
         
            +
                                    encoder_modules
         
     | 
| 312 | 
         
            +
                                ) != len(decoder_modules):
         
     | 
| 313 | 
         
            +
                                    # this can happen if the name corresponds to the position in a list module list of layers
         
     | 
| 314 | 
         
            +
                                    # in this case the decoder has added a cross-attention that the encoder does not have
         
     | 
| 315 | 
         
            +
                                    # thus skip this step and subtract one layer pos from encoder
         
     | 
| 316 | 
         
            +
                                    encoder_layer_pos -= 1
         
     | 
| 317 | 
         
            +
                                    continue
         
     | 
| 318 | 
         
            +
                            elif name not in encoder_modules:
         
     | 
| 319 | 
         
            +
                                continue
         
     | 
| 320 | 
         
            +
                            elif depth > 500:
         
     | 
| 321 | 
         
            +
                                raise ValueError(
         
     | 
| 322 | 
         
            +
                                    "Max depth of recursive function `tie_encoder_to_decoder` reached. It seems that there is a circular dependency between two or more `nn.Modules` of your model."
         
     | 
| 323 | 
         
            +
                                )
         
     | 
| 324 | 
         
            +
                            else:
         
     | 
| 325 | 
         
            +
                                decoder_name = encoder_name = name
         
     | 
| 326 | 
         
            +
                            tie_encoder_to_decoder_recursively(
         
     | 
| 327 | 
         
            +
                                decoder_modules[decoder_name],
         
     | 
| 328 | 
         
            +
                                encoder_modules[encoder_name],
         
     | 
| 329 | 
         
            +
                                module_name + "/" + name,
         
     | 
| 330 | 
         
            +
                                uninitialized_encoder_weights,
         
     | 
| 331 | 
         
            +
                                skip_key,
         
     | 
| 332 | 
         
            +
                                depth=depth + 1,
         
     | 
| 333 | 
         
            +
                            )
         
     | 
| 334 | 
         
            +
                            all_encoder_weights.remove(module_name + "/" + encoder_name)
         
     | 
| 335 | 
         
            +
             
     | 
| 336 | 
         
            +
                        uninitialized_encoder_weights += list(all_encoder_weights)
         
     | 
| 337 | 
         
            +
             
     | 
| 338 | 
         
            +
                # tie weights recursively
         
     | 
| 339 | 
         
            +
                tie_encoder_to_decoder_recursively(decoder, encoder, base_model_prefix, uninitialized_encoder_weights, skip_key)  
         
     | 
    	
        extras/BLIP/models/blip_retrieval.py
    ADDED
    
    | 
         @@ -0,0 +1,319 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from extras.BLIP.models.med import BertConfig, BertModel
         
     | 
| 2 | 
         
            +
            from transformers import BertTokenizer
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            import torch
         
     | 
| 5 | 
         
            +
            from torch import nn
         
     | 
| 6 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            from extras.BLIP.models.blip import create_vit, init_tokenizer, load_checkpoint
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            class BLIP_Retrieval(nn.Module):
         
     | 
| 11 | 
         
            +
                def __init__(self,                 
         
     | 
| 12 | 
         
            +
                             med_config = 'configs/med_config.json',  
         
     | 
| 13 | 
         
            +
                             image_size = 384,
         
     | 
| 14 | 
         
            +
                             vit = 'base',
         
     | 
| 15 | 
         
            +
                             vit_grad_ckpt = False,
         
     | 
| 16 | 
         
            +
                             vit_ckpt_layer = 0,                      
         
     | 
| 17 | 
         
            +
                             embed_dim = 256,     
         
     | 
| 18 | 
         
            +
                             queue_size = 57600,
         
     | 
| 19 | 
         
            +
                             momentum = 0.995,
         
     | 
| 20 | 
         
            +
                             negative_all_rank = False,
         
     | 
| 21 | 
         
            +
                             ):
         
     | 
| 22 | 
         
            +
                    """
         
     | 
| 23 | 
         
            +
                    Args:
         
     | 
| 24 | 
         
            +
                        med_config (str): path for the mixture of encoder-decoder model's configuration file
         
     | 
| 25 | 
         
            +
                        image_size (int): input image size
         
     | 
| 26 | 
         
            +
                        vit (str): model size of vision transformer
         
     | 
| 27 | 
         
            +
                    """               
         
     | 
| 28 | 
         
            +
                    super().__init__()
         
     | 
| 29 | 
         
            +
                    
         
     | 
| 30 | 
         
            +
                    self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer)
         
     | 
| 31 | 
         
            +
                    self.tokenizer = init_tokenizer()   
         
     | 
| 32 | 
         
            +
                    med_config = BertConfig.from_json_file(med_config)
         
     | 
| 33 | 
         
            +
                    med_config.encoder_width = vision_width
         
     | 
| 34 | 
         
            +
                    self.text_encoder = BertModel(config=med_config, add_pooling_layer=False)          
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
                    text_width = self.text_encoder.config.hidden_size
         
     | 
| 37 | 
         
            +
                    
         
     | 
| 38 | 
         
            +
                    self.vision_proj = nn.Linear(vision_width, embed_dim)
         
     | 
| 39 | 
         
            +
                    self.text_proj = nn.Linear(text_width, embed_dim)
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
                    self.itm_head = nn.Linear(text_width, 2) 
         
     | 
| 42 | 
         
            +
                    
         
     | 
| 43 | 
         
            +
                    # create momentum encoders  
         
     | 
| 44 | 
         
            +
                    self.visual_encoder_m, vision_width = create_vit(vit,image_size)              
         
     | 
| 45 | 
         
            +
                    self.vision_proj_m = nn.Linear(vision_width, embed_dim)
         
     | 
| 46 | 
         
            +
                    self.text_encoder_m = BertModel(config=med_config, add_pooling_layer=False)    
         
     | 
| 47 | 
         
            +
                    self.text_proj_m = nn.Linear(text_width, embed_dim)
         
     | 
| 48 | 
         
            +
                    
         
     | 
| 49 | 
         
            +
                    self.model_pairs = [[self.visual_encoder,self.visual_encoder_m],
         
     | 
| 50 | 
         
            +
                                        [self.vision_proj,self.vision_proj_m],
         
     | 
| 51 | 
         
            +
                                        [self.text_encoder,self.text_encoder_m],
         
     | 
| 52 | 
         
            +
                                        [self.text_proj,self.text_proj_m],
         
     | 
| 53 | 
         
            +
                                       ]       
         
     | 
| 54 | 
         
            +
                    self.copy_params()
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
                    # create the queue
         
     | 
| 57 | 
         
            +
                    self.register_buffer("image_queue", torch.randn(embed_dim, queue_size))
         
     | 
| 58 | 
         
            +
                    self.register_buffer("text_queue", torch.randn(embed_dim, queue_size))
         
     | 
| 59 | 
         
            +
                    self.register_buffer("idx_queue", torch.full((1,queue_size),-100))
         
     | 
| 60 | 
         
            +
                    self.register_buffer("ptr_queue", torch.zeros(1, dtype=torch.long))  
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                    self.image_queue = nn.functional.normalize(self.image_queue, dim=0)
         
     | 
| 63 | 
         
            +
                    self.text_queue = nn.functional.normalize(self.text_queue, dim=0)
         
     | 
| 64 | 
         
            +
                    
         
     | 
| 65 | 
         
            +
                    self.queue_size = queue_size
         
     | 
| 66 | 
         
            +
                    self.momentum = momentum
         
     | 
| 67 | 
         
            +
                    self.temp = nn.Parameter(0.07*torch.ones([]))   
         
     | 
| 68 | 
         
            +
                    
         
     | 
| 69 | 
         
            +
                    self.negative_all_rank = negative_all_rank
         
     | 
| 70 | 
         
            +
                    
         
     | 
| 71 | 
         
            +
                    
         
     | 
| 72 | 
         
            +
                def forward(self, image, caption, alpha, idx):
         
     | 
| 73 | 
         
            +
                    with torch.no_grad():
         
     | 
| 74 | 
         
            +
                        self.temp.clamp_(0.001,0.5)
         
     | 
| 75 | 
         
            +
                    
         
     | 
| 76 | 
         
            +
                    image_embeds = self.visual_encoder(image) 
         
     | 
| 77 | 
         
            +
                    image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)        
         
     | 
| 78 | 
         
            +
                    image_feat = F.normalize(self.vision_proj(image_embeds[:,0,:]),dim=-1)    
         
     | 
| 79 | 
         
            +
                    
         
     | 
| 80 | 
         
            +
                    text = self.tokenizer(caption, padding='max_length', truncation=True, max_length=35, 
         
     | 
| 81 | 
         
            +
                                          return_tensors="pt").to(image.device) 
         
     | 
| 82 | 
         
            +
                    
         
     | 
| 83 | 
         
            +
                    text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask,                      
         
     | 
| 84 | 
         
            +
                                                    return_dict = True, mode = 'text')            
         
     | 
| 85 | 
         
            +
                    text_feat = F.normalize(self.text_proj(text_output.last_hidden_state[:,0,:]),dim=-1)        
         
     | 
| 86 | 
         
            +
                    
         
     | 
| 87 | 
         
            +
                    ###============== Image-text Contrastive Learning ===================###
         
     | 
| 88 | 
         
            +
                    idx = idx.view(-1,1)
         
     | 
| 89 | 
         
            +
                    idx_all = torch.cat([idx.t(), self.idx_queue.clone().detach()],dim=1)  
         
     | 
| 90 | 
         
            +
                    pos_idx = torch.eq(idx, idx_all).float()       
         
     | 
| 91 | 
         
            +
                    sim_targets = pos_idx / pos_idx.sum(1,keepdim=True)   
         
     | 
| 92 | 
         
            +
                    
         
     | 
| 93 | 
         
            +
                    # get momentum features
         
     | 
| 94 | 
         
            +
                    with torch.no_grad():
         
     | 
| 95 | 
         
            +
                        self._momentum_update()
         
     | 
| 96 | 
         
            +
                        image_embeds_m = self.visual_encoder_m(image) 
         
     | 
| 97 | 
         
            +
                        image_feat_m = F.normalize(self.vision_proj_m(image_embeds_m[:,0,:]),dim=-1)  
         
     | 
| 98 | 
         
            +
                        image_feat_m_all = torch.cat([image_feat_m.t(),self.image_queue.clone().detach()],dim=1)                   
         
     | 
| 99 | 
         
            +
                        
         
     | 
| 100 | 
         
            +
                        text_output_m = self.text_encoder_m(text.input_ids, attention_mask = text.attention_mask,                      
         
     | 
| 101 | 
         
            +
                                                            return_dict = True, mode = 'text')    
         
     | 
| 102 | 
         
            +
                        text_feat_m = F.normalize(self.text_proj_m(text_output_m.last_hidden_state[:,0,:]),dim=-1) 
         
     | 
| 103 | 
         
            +
                        text_feat_m_all = torch.cat([text_feat_m.t(),self.text_queue.clone().detach()],dim=1)
         
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
                        sim_i2t_m = image_feat_m @ text_feat_m_all / self.temp  
         
     | 
| 106 | 
         
            +
                        sim_t2i_m = text_feat_m @ image_feat_m_all / self.temp   
         
     | 
| 107 | 
         
            +
             
     | 
| 108 | 
         
            +
                        sim_i2t_targets = alpha * F.softmax(sim_i2t_m, dim=1) + (1 - alpha) * sim_targets
         
     | 
| 109 | 
         
            +
                        sim_t2i_targets = alpha * F.softmax(sim_t2i_m, dim=1) + (1 - alpha) * sim_targets        
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
                    sim_i2t = image_feat @ text_feat_m_all / self.temp 
         
     | 
| 112 | 
         
            +
                    sim_t2i = text_feat @ image_feat_m_all / self.temp 
         
     | 
| 113 | 
         
            +
                                         
         
     | 
| 114 | 
         
            +
                    loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1)*sim_i2t_targets,dim=1).mean()
         
     | 
| 115 | 
         
            +
                    loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1)*sim_t2i_targets,dim=1).mean() 
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
                    loss_ita = (loss_i2t+loss_t2i)/2
         
     | 
| 118 | 
         
            +
                    
         
     | 
| 119 | 
         
            +
                    idxs = concat_all_gather(idx)
         
     | 
| 120 | 
         
            +
                    self._dequeue_and_enqueue(image_feat_m, text_feat_m, idxs)        
         
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
                    ###============== Image-text Matching ===================###
         
     | 
| 123 | 
         
            +
                    encoder_input_ids = text.input_ids.clone()
         
     | 
| 124 | 
         
            +
                    encoder_input_ids[:,0] = self.tokenizer.enc_token_id
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
                    # forward the positve image-text pair
         
     | 
| 127 | 
         
            +
                    bs = image.size(0)
         
     | 
| 128 | 
         
            +
                    output_pos = self.text_encoder(encoder_input_ids,
         
     | 
| 129 | 
         
            +
                                                   attention_mask = text.attention_mask,
         
     | 
| 130 | 
         
            +
                                                   encoder_hidden_states = image_embeds,
         
     | 
| 131 | 
         
            +
                                                   encoder_attention_mask = image_atts,      
         
     | 
| 132 | 
         
            +
                                                   return_dict = True,
         
     | 
| 133 | 
         
            +
                                                  )  
         
     | 
| 134 | 
         
            +
                    
         
     | 
| 135 | 
         
            +
                    
         
     | 
| 136 | 
         
            +
                    if self.negative_all_rank:    
         
     | 
| 137 | 
         
            +
                        # compute sample similarity
         
     | 
| 138 | 
         
            +
                        with torch.no_grad():                
         
     | 
| 139 | 
         
            +
                            mask = torch.eq(idx, idxs.t())
         
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
                            image_feat_world = concat_all_gather(image_feat)
         
     | 
| 142 | 
         
            +
                            text_feat_world = concat_all_gather(text_feat)
         
     | 
| 143 | 
         
            +
             
     | 
| 144 | 
         
            +
                            sim_i2t = image_feat @ text_feat_world.t() / self.temp 
         
     | 
| 145 | 
         
            +
                            sim_t2i = text_feat @ image_feat_world.t() / self.temp 
         
     | 
| 146 | 
         
            +
             
     | 
| 147 | 
         
            +
                            weights_i2t = F.softmax(sim_i2t,dim=1)
         
     | 
| 148 | 
         
            +
                            weights_i2t.masked_fill_(mask, 0)            
         
     | 
| 149 | 
         
            +
             
     | 
| 150 | 
         
            +
                            weights_t2i = F.softmax(sim_t2i,dim=1)
         
     | 
| 151 | 
         
            +
                            weights_t2i.masked_fill_(mask, 0)     
         
     | 
| 152 | 
         
            +
             
     | 
| 153 | 
         
            +
                        image_embeds_world = all_gather_with_grad(image_embeds) 
         
     | 
| 154 | 
         
            +
             
     | 
| 155 | 
         
            +
                        # select a negative image (from all ranks) for each text
         
     | 
| 156 | 
         
            +
                        image_embeds_neg = []    
         
     | 
| 157 | 
         
            +
                        for b in range(bs):
         
     | 
| 158 | 
         
            +
                            neg_idx = torch.multinomial(weights_t2i[b], 1).item()
         
     | 
| 159 | 
         
            +
                            image_embeds_neg.append(image_embeds_world[neg_idx])
         
     | 
| 160 | 
         
            +
                        image_embeds_neg = torch.stack(image_embeds_neg,dim=0)   
         
     | 
| 161 | 
         
            +
             
     | 
| 162 | 
         
            +
                        # select a negative text (from all ranks) for each image
         
     | 
| 163 | 
         
            +
                        input_ids_world = concat_all_gather(encoder_input_ids)
         
     | 
| 164 | 
         
            +
                        att_mask_world = concat_all_gather(text.attention_mask)        
         
     | 
| 165 | 
         
            +
             
     | 
| 166 | 
         
            +
                        text_ids_neg = []
         
     | 
| 167 | 
         
            +
                        text_atts_neg = []
         
     | 
| 168 | 
         
            +
                        for b in range(bs):
         
     | 
| 169 | 
         
            +
                            neg_idx = torch.multinomial(weights_i2t[b], 1).item()
         
     | 
| 170 | 
         
            +
                            text_ids_neg.append(input_ids_world[neg_idx])
         
     | 
| 171 | 
         
            +
                            text_atts_neg.append(att_mask_world[neg_idx])
         
     | 
| 172 | 
         
            +
                            
         
     | 
| 173 | 
         
            +
                    else:
         
     | 
| 174 | 
         
            +
                        with torch.no_grad():                
         
     | 
| 175 | 
         
            +
                            mask = torch.eq(idx, idx.t())
         
     | 
| 176 | 
         
            +
                            
         
     | 
| 177 | 
         
            +
                            sim_i2t = image_feat @ text_feat.t() / self.temp 
         
     | 
| 178 | 
         
            +
                            sim_t2i = text_feat @ image_feat.t() / self.temp 
         
     | 
| 179 | 
         
            +
             
     | 
| 180 | 
         
            +
                            weights_i2t = F.softmax(sim_i2t,dim=1)
         
     | 
| 181 | 
         
            +
                            weights_i2t.masked_fill_(mask, 0)            
         
     | 
| 182 | 
         
            +
             
     | 
| 183 | 
         
            +
                            weights_t2i = F.softmax(sim_t2i,dim=1)
         
     | 
| 184 | 
         
            +
                            weights_t2i.masked_fill_(mask, 0)     
         
     | 
| 185 | 
         
            +
             
     | 
| 186 | 
         
            +
                        # select a negative image (from same rank) for each text
         
     | 
| 187 | 
         
            +
                        image_embeds_neg = []    
         
     | 
| 188 | 
         
            +
                        for b in range(bs):
         
     | 
| 189 | 
         
            +
                            neg_idx = torch.multinomial(weights_t2i[b], 1).item()
         
     | 
| 190 | 
         
            +
                            image_embeds_neg.append(image_embeds[neg_idx])
         
     | 
| 191 | 
         
            +
                        image_embeds_neg = torch.stack(image_embeds_neg,dim=0)   
         
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
                        # select a negative text (from same rank) for each image    
         
     | 
| 194 | 
         
            +
                        text_ids_neg = []
         
     | 
| 195 | 
         
            +
                        text_atts_neg = []
         
     | 
| 196 | 
         
            +
                        for b in range(bs):
         
     | 
| 197 | 
         
            +
                            neg_idx = torch.multinomial(weights_i2t[b], 1).item()
         
     | 
| 198 | 
         
            +
                            text_ids_neg.append(encoder_input_ids[neg_idx])
         
     | 
| 199 | 
         
            +
                            text_atts_neg.append(text.attention_mask[neg_idx])            
         
     | 
| 200 | 
         
            +
                        
         
     | 
| 201 | 
         
            +
                    text_ids_neg = torch.stack(text_ids_neg,dim=0)   
         
     | 
| 202 | 
         
            +
                    text_atts_neg = torch.stack(text_atts_neg,dim=0)      
         
     | 
| 203 | 
         
            +
             
     | 
| 204 | 
         
            +
                    text_ids_all = torch.cat([encoder_input_ids, text_ids_neg],dim=0)     
         
     | 
| 205 | 
         
            +
                    text_atts_all = torch.cat([text.attention_mask, text_atts_neg],dim=0)     
         
     | 
| 206 | 
         
            +
             
     | 
| 207 | 
         
            +
                    image_embeds_all = torch.cat([image_embeds_neg,image_embeds],dim=0)
         
     | 
| 208 | 
         
            +
                    image_atts_all = torch.cat([image_atts,image_atts],dim=0)
         
     | 
| 209 | 
         
            +
             
     | 
| 210 | 
         
            +
                    output_neg = self.text_encoder(text_ids_all,
         
     | 
| 211 | 
         
            +
                                                   attention_mask = text_atts_all,
         
     | 
| 212 | 
         
            +
                                                   encoder_hidden_states = image_embeds_all,
         
     | 
| 213 | 
         
            +
                                                   encoder_attention_mask = image_atts_all,      
         
     | 
| 214 | 
         
            +
                                                   return_dict = True,
         
     | 
| 215 | 
         
            +
                                                  )                         
         
     | 
| 216 | 
         
            +
                      
         
     | 
| 217 | 
         
            +
             
     | 
| 218 | 
         
            +
                    vl_embeddings = torch.cat([output_pos.last_hidden_state[:,0,:], output_neg.last_hidden_state[:,0,:]],dim=0)
         
     | 
| 219 | 
         
            +
                    vl_output = self.itm_head(vl_embeddings)            
         
     | 
| 220 | 
         
            +
             
     | 
| 221 | 
         
            +
                    itm_labels = torch.cat([torch.ones(bs,dtype=torch.long),torch.zeros(2*bs,dtype=torch.long)],
         
     | 
| 222 | 
         
            +
                                           dim=0).to(image.device)
         
     | 
| 223 | 
         
            +
                    loss_itm = F.cross_entropy(vl_output, itm_labels)     
         
     | 
| 224 | 
         
            +
             
     | 
| 225 | 
         
            +
                    return loss_ita, loss_itm 
         
     | 
| 226 | 
         
            +
             
         
     | 
| 227 | 
         
            +
             
     | 
| 228 | 
         
            +
                @torch.no_grad()    
         
     | 
| 229 | 
         
            +
                def copy_params(self):
         
     | 
| 230 | 
         
            +
                    for model_pair in self.model_pairs:           
         
     | 
| 231 | 
         
            +
                        for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
         
     | 
| 232 | 
         
            +
                            param_m.data.copy_(param.data)  # initialize
         
     | 
| 233 | 
         
            +
                            param_m.requires_grad = False  # not update by gradient    
         
     | 
| 234 | 
         
            +
             
     | 
| 235 | 
         
            +
                        
         
     | 
| 236 | 
         
            +
                @torch.no_grad()        
         
     | 
| 237 | 
         
            +
                def _momentum_update(self):
         
     | 
| 238 | 
         
            +
                    for model_pair in self.model_pairs:           
         
     | 
| 239 | 
         
            +
                        for param, param_m in zip(model_pair[0].parameters(), model_pair[1].parameters()):
         
     | 
| 240 | 
         
            +
                            param_m.data = param_m.data * self.momentum + param.data * (1. - self.momentum)
         
     | 
| 241 | 
         
            +
                            
         
     | 
| 242 | 
         
            +
                            
         
     | 
| 243 | 
         
            +
                @torch.no_grad()
         
     | 
| 244 | 
         
            +
                def _dequeue_and_enqueue(self, image_feat, text_feat, idxs):
         
     | 
| 245 | 
         
            +
                    # gather keys before updating queue
         
     | 
| 246 | 
         
            +
                    image_feats = concat_all_gather(image_feat)
         
     | 
| 247 | 
         
            +
                    text_feats = concat_all_gather(text_feat)
         
     | 
| 248 | 
         
            +
                    
         
     | 
| 249 | 
         
            +
             
     | 
| 250 | 
         
            +
                    batch_size = image_feats.shape[0]
         
     | 
| 251 | 
         
            +
             
     | 
| 252 | 
         
            +
                    ptr = int(self.ptr_queue)
         
     | 
| 253 | 
         
            +
                    assert self.queue_size % batch_size == 0  # for simplicity
         
     | 
| 254 | 
         
            +
             
     | 
| 255 | 
         
            +
                    # replace the keys at ptr (dequeue and enqueue)
         
     | 
| 256 | 
         
            +
                    self.image_queue[:, ptr:ptr + batch_size] = image_feats.T
         
     | 
| 257 | 
         
            +
                    self.text_queue[:, ptr:ptr + batch_size] = text_feats.T
         
     | 
| 258 | 
         
            +
                    self.idx_queue[:, ptr:ptr + batch_size] = idxs.T
         
     | 
| 259 | 
         
            +
                    ptr = (ptr + batch_size) % self.queue_size # move pointer
         
     | 
| 260 | 
         
            +
             
     | 
| 261 | 
         
            +
                    self.ptr_queue[0] = ptr  
         
     | 
| 262 | 
         
            +
             
     | 
| 263 | 
         
            +
             
     | 
| 264 | 
         
            +
            def blip_retrieval(pretrained='',**kwargs):
         
     | 
| 265 | 
         
            +
                model = BLIP_Retrieval(**kwargs)
         
     | 
| 266 | 
         
            +
                if pretrained:
         
     | 
| 267 | 
         
            +
                    model,msg = load_checkpoint(model,pretrained)
         
     | 
| 268 | 
         
            +
                    print("missing keys:")
         
     | 
| 269 | 
         
            +
                    print(msg.missing_keys)
         
     | 
| 270 | 
         
            +
                return model 
         
     | 
| 271 | 
         
            +
             
     | 
| 272 | 
         
            +
             
     | 
| 273 | 
         
            +
            @torch.no_grad()
         
     | 
| 274 | 
         
            +
            def concat_all_gather(tensor):
         
     | 
| 275 | 
         
            +
                """
         
     | 
| 276 | 
         
            +
                Performs all_gather operation on the provided tensors.
         
     | 
| 277 | 
         
            +
                *** Warning ***: torch.distributed.all_gather has no gradient.
         
     | 
| 278 | 
         
            +
                """
         
     | 
| 279 | 
         
            +
                tensors_gather = [torch.ones_like(tensor)
         
     | 
| 280 | 
         
            +
                    for _ in range(torch.distributed.get_world_size())]
         
     | 
| 281 | 
         
            +
                torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
         
     | 
| 282 | 
         
            +
             
     | 
| 283 | 
         
            +
                output = torch.cat(tensors_gather, dim=0)
         
     | 
| 284 | 
         
            +
                return output      
         
     | 
| 285 | 
         
            +
             
     | 
| 286 | 
         
            +
             
     | 
| 287 | 
         
            +
            class GatherLayer(torch.autograd.Function):
         
     | 
| 288 | 
         
            +
                """
         
     | 
| 289 | 
         
            +
                Gather tensors from all workers with support for backward propagation:
         
     | 
| 290 | 
         
            +
                This implementation does not cut the gradients as torch.distributed.all_gather does.
         
     | 
| 291 | 
         
            +
                """
         
     | 
| 292 | 
         
            +
             
     | 
| 293 | 
         
            +
                @staticmethod
         
     | 
| 294 | 
         
            +
                def forward(ctx, x):
         
     | 
| 295 | 
         
            +
                    output = [torch.zeros_like(x) for _ in range(torch.distributed.get_world_size())]
         
     | 
| 296 | 
         
            +
                    torch.distributed.all_gather(output, x)
         
     | 
| 297 | 
         
            +
                    return tuple(output)
         
     | 
| 298 | 
         
            +
             
     | 
| 299 | 
         
            +
                @staticmethod
         
     | 
| 300 | 
         
            +
                def backward(ctx, *grads):
         
     | 
| 301 | 
         
            +
                    all_gradients = torch.stack(grads)
         
     | 
| 302 | 
         
            +
                    torch.distributed.all_reduce(all_gradients)
         
     | 
| 303 | 
         
            +
                    return all_gradients[torch.distributed.get_rank()]
         
     | 
| 304 | 
         
            +
             
     | 
| 305 | 
         
            +
             
     | 
| 306 | 
         
            +
            def all_gather_with_grad(tensors):
         
     | 
| 307 | 
         
            +
                """
         
     | 
| 308 | 
         
            +
                Performs all_gather operation on the provided tensors.
         
     | 
| 309 | 
         
            +
                Graph remains connected for backward grad computation.
         
     | 
| 310 | 
         
            +
                """
         
     | 
| 311 | 
         
            +
                # Queue the gathered tensors
         
     | 
| 312 | 
         
            +
                world_size = torch.distributed.get_world_size()
         
     | 
| 313 | 
         
            +
                # There is no need for reduction in the single-proc case
         
     | 
| 314 | 
         
            +
                if world_size == 1:
         
     | 
| 315 | 
         
            +
                    return tensors
         
     | 
| 316 | 
         
            +
             
     | 
| 317 | 
         
            +
                tensor_all = GatherLayer.apply(tensors)
         
     | 
| 318 | 
         
            +
             
     | 
| 319 | 
         
            +
                return torch.cat(tensor_all, dim=0)
         
     | 
    	
        extras/BLIP/models/blip_vqa.py
    ADDED
    
    | 
         @@ -0,0 +1,186 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from extras.BLIP.models.med import BertConfig, BertModel, BertLMHeadModel
         
     | 
| 2 | 
         
            +
            from extras.BLIP.models.blip import create_vit, init_tokenizer, load_checkpoint
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            import torch
         
     | 
| 5 | 
         
            +
            from torch import nn
         
     | 
| 6 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 7 | 
         
            +
            from transformers import BertTokenizer
         
     | 
| 8 | 
         
            +
            import numpy as np
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            class BLIP_VQA(nn.Module):
         
     | 
| 11 | 
         
            +
                def __init__(self,                 
         
     | 
| 12 | 
         
            +
                             med_config = 'configs/med_config.json',  
         
     | 
| 13 | 
         
            +
                             image_size = 480,
         
     | 
| 14 | 
         
            +
                             vit = 'base',
         
     | 
| 15 | 
         
            +
                             vit_grad_ckpt = False,
         
     | 
| 16 | 
         
            +
                             vit_ckpt_layer = 0,                   
         
     | 
| 17 | 
         
            +
                             ):
         
     | 
| 18 | 
         
            +
                    """
         
     | 
| 19 | 
         
            +
                    Args:
         
     | 
| 20 | 
         
            +
                        med_config (str): path for the mixture of encoder-decoder model's configuration file
         
     | 
| 21 | 
         
            +
                        image_size (int): input image size
         
     | 
| 22 | 
         
            +
                        vit (str): model size of vision transformer
         
     | 
| 23 | 
         
            +
                    """               
         
     | 
| 24 | 
         
            +
                    super().__init__()
         
     | 
| 25 | 
         
            +
                    
         
     | 
| 26 | 
         
            +
                    self.visual_encoder, vision_width = create_vit(vit, image_size, vit_grad_ckpt, vit_ckpt_layer, drop_path_rate=0.1)
         
     | 
| 27 | 
         
            +
                    self.tokenizer = init_tokenizer()  
         
     | 
| 28 | 
         
            +
                    
         
     | 
| 29 | 
         
            +
                    encoder_config = BertConfig.from_json_file(med_config)
         
     | 
| 30 | 
         
            +
                    encoder_config.encoder_width = vision_width
         
     | 
| 31 | 
         
            +
                    self.text_encoder = BertModel(config=encoder_config, add_pooling_layer=False) 
         
     | 
| 32 | 
         
            +
                    
         
     | 
| 33 | 
         
            +
                    decoder_config = BertConfig.from_json_file(med_config)        
         
     | 
| 34 | 
         
            +
                    self.text_decoder = BertLMHeadModel(config=decoder_config)          
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
                def forward(self, image, question, answer=None, n=None, weights=None, train=True, inference='rank', k_test=128):
         
     | 
| 38 | 
         
            +
                    
         
     | 
| 39 | 
         
            +
                    image_embeds = self.visual_encoder(image) 
         
     | 
| 40 | 
         
            +
                    image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device)
         
     | 
| 41 | 
         
            +
                    
         
     | 
| 42 | 
         
            +
                    question = self.tokenizer(question, padding='longest', truncation=True, max_length=35, 
         
     | 
| 43 | 
         
            +
                                              return_tensors="pt").to(image.device) 
         
     | 
| 44 | 
         
            +
                    question.input_ids[:,0] = self.tokenizer.enc_token_id
         
     | 
| 45 | 
         
            +
                    
         
     | 
| 46 | 
         
            +
                    if train:               
         
     | 
| 47 | 
         
            +
                        '''
         
     | 
| 48 | 
         
            +
                        n: number of answers for each question
         
     | 
| 49 | 
         
            +
                        weights: weight for each answer
         
     | 
| 50 | 
         
            +
                        '''                     
         
     | 
| 51 | 
         
            +
                        answer = self.tokenizer(answer, padding='longest', return_tensors="pt").to(image.device) 
         
     | 
| 52 | 
         
            +
                        answer.input_ids[:,0] = self.tokenizer.bos_token_id
         
     | 
| 53 | 
         
            +
                        answer_targets = answer.input_ids.masked_fill(answer.input_ids == self.tokenizer.pad_token_id, -100)      
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
                        question_output = self.text_encoder(question.input_ids, 
         
     | 
| 56 | 
         
            +
                                                            attention_mask = question.attention_mask, 
         
     | 
| 57 | 
         
            +
                                                            encoder_hidden_states = image_embeds,
         
     | 
| 58 | 
         
            +
                                                            encoder_attention_mask = image_atts,                             
         
     | 
| 59 | 
         
            +
                                                            return_dict = True)    
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
                        question_states = []                
         
     | 
| 62 | 
         
            +
                        question_atts = []  
         
     | 
| 63 | 
         
            +
                        for b, n in enumerate(n):
         
     | 
| 64 | 
         
            +
                            question_states += [question_output.last_hidden_state[b]]*n
         
     | 
| 65 | 
         
            +
                            question_atts += [question.attention_mask[b]]*n                
         
     | 
| 66 | 
         
            +
                        question_states = torch.stack(question_states,0)    
         
     | 
| 67 | 
         
            +
                        question_atts = torch.stack(question_atts,0)     
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
                        answer_output = self.text_decoder(answer.input_ids, 
         
     | 
| 70 | 
         
            +
                                                          attention_mask = answer.attention_mask, 
         
     | 
| 71 | 
         
            +
                                                          encoder_hidden_states = question_states,
         
     | 
| 72 | 
         
            +
                                                          encoder_attention_mask = question_atts,                  
         
     | 
| 73 | 
         
            +
                                                          labels = answer_targets,
         
     | 
| 74 | 
         
            +
                                                          return_dict = True,   
         
     | 
| 75 | 
         
            +
                                                          reduction = 'none',
         
     | 
| 76 | 
         
            +
                                                         )      
         
     | 
| 77 | 
         
            +
                        
         
     | 
| 78 | 
         
            +
                        loss = weights * answer_output.loss
         
     | 
| 79 | 
         
            +
                        loss = loss.sum()/image.size(0)
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                        return loss
         
     | 
| 82 | 
         
            +
                        
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
                    else: 
         
     | 
| 85 | 
         
            +
                        question_output = self.text_encoder(question.input_ids, 
         
     | 
| 86 | 
         
            +
                                                            attention_mask = question.attention_mask, 
         
     | 
| 87 | 
         
            +
                                                            encoder_hidden_states = image_embeds,
         
     | 
| 88 | 
         
            +
                                                            encoder_attention_mask = image_atts,                                    
         
     | 
| 89 | 
         
            +
                                                            return_dict = True) 
         
     | 
| 90 | 
         
            +
                        
         
     | 
| 91 | 
         
            +
                        if inference=='generate':
         
     | 
| 92 | 
         
            +
                            num_beams = 3
         
     | 
| 93 | 
         
            +
                            question_states = question_output.last_hidden_state.repeat_interleave(num_beams,dim=0)
         
     | 
| 94 | 
         
            +
                            question_atts = torch.ones(question_states.size()[:-1],dtype=torch.long).to(question_states.device)
         
     | 
| 95 | 
         
            +
                            model_kwargs = {"encoder_hidden_states": question_states, "encoder_attention_mask":question_atts}
         
     | 
| 96 | 
         
            +
                            
         
     | 
| 97 | 
         
            +
                            bos_ids = torch.full((image.size(0),1),fill_value=self.tokenizer.bos_token_id,device=image.device)
         
     | 
| 98 | 
         
            +
                            
         
     | 
| 99 | 
         
            +
                            outputs = self.text_decoder.generate(input_ids=bos_ids,
         
     | 
| 100 | 
         
            +
                                                                 max_length=10,
         
     | 
| 101 | 
         
            +
                                                                 min_length=1,
         
     | 
| 102 | 
         
            +
                                                                 num_beams=num_beams,
         
     | 
| 103 | 
         
            +
                                                                 eos_token_id=self.tokenizer.sep_token_id,
         
     | 
| 104 | 
         
            +
                                                                 pad_token_id=self.tokenizer.pad_token_id, 
         
     | 
| 105 | 
         
            +
                                                                 **model_kwargs)
         
     | 
| 106 | 
         
            +
                            
         
     | 
| 107 | 
         
            +
                            answers = []    
         
     | 
| 108 | 
         
            +
                            for output in outputs:
         
     | 
| 109 | 
         
            +
                                answer = self.tokenizer.decode(output, skip_special_tokens=True)    
         
     | 
| 110 | 
         
            +
                                answers.append(answer)
         
     | 
| 111 | 
         
            +
                            return answers
         
     | 
| 112 | 
         
            +
                        
         
     | 
| 113 | 
         
            +
                        elif inference=='rank':
         
     | 
| 114 | 
         
            +
                            max_ids = self.rank_answer(question_output.last_hidden_state, question.attention_mask, 
         
     | 
| 115 | 
         
            +
                                                       answer.input_ids, answer.attention_mask, k_test) 
         
     | 
| 116 | 
         
            +
                            return max_ids
         
     | 
| 117 | 
         
            +
             
         
     | 
| 118 | 
         
            +
                            
         
     | 
| 119 | 
         
            +
                            
         
     | 
| 120 | 
         
            +
                def rank_answer(self, question_states, question_atts, answer_ids, answer_atts, k):
         
     | 
| 121 | 
         
            +
                    
         
     | 
| 122 | 
         
            +
                    num_ques = question_states.size(0)
         
     | 
| 123 | 
         
            +
                    start_ids = answer_ids[0,0].repeat(num_ques,1) # bos token
         
     | 
| 124 | 
         
            +
                    
         
     | 
| 125 | 
         
            +
                    start_output = self.text_decoder(start_ids, 
         
     | 
| 126 | 
         
            +
                                                     encoder_hidden_states = question_states,
         
     | 
| 127 | 
         
            +
                                                     encoder_attention_mask = question_atts,                                      
         
     | 
| 128 | 
         
            +
                                                     return_dict = True,
         
     | 
| 129 | 
         
            +
                                                     reduction = 'none')              
         
     | 
| 130 | 
         
            +
                    logits = start_output.logits[:,0,:] # first token's logit
         
     | 
| 131 | 
         
            +
                    
         
     | 
| 132 | 
         
            +
                    # topk_probs: top-k probability 
         
     | 
| 133 | 
         
            +
                    # topk_ids: [num_question, k]        
         
     | 
| 134 | 
         
            +
                    answer_first_token = answer_ids[:,1]
         
     | 
| 135 | 
         
            +
                    prob_first_token = F.softmax(logits,dim=1).index_select(dim=1, index=answer_first_token) 
         
     | 
| 136 | 
         
            +
                    topk_probs, topk_ids = prob_first_token.topk(k,dim=1) 
         
     | 
| 137 | 
         
            +
                    
         
     | 
| 138 | 
         
            +
                    # answer input: [num_question*k, answer_len]                 
         
     | 
| 139 | 
         
            +
                    input_ids = []
         
     | 
| 140 | 
         
            +
                    input_atts = []
         
     | 
| 141 | 
         
            +
                    for b, topk_id in enumerate(topk_ids):
         
     | 
| 142 | 
         
            +
                        input_ids.append(answer_ids.index_select(dim=0, index=topk_id))
         
     | 
| 143 | 
         
            +
                        input_atts.append(answer_atts.index_select(dim=0, index=topk_id))
         
     | 
| 144 | 
         
            +
                    input_ids = torch.cat(input_ids,dim=0)  
         
     | 
| 145 | 
         
            +
                    input_atts = torch.cat(input_atts,dim=0)  
         
     | 
| 146 | 
         
            +
             
     | 
| 147 | 
         
            +
                    targets_ids = input_ids.masked_fill(input_ids == self.tokenizer.pad_token_id, -100)
         
     | 
| 148 | 
         
            +
             
     | 
| 149 | 
         
            +
                    # repeat encoder's output for top-k answers
         
     | 
| 150 | 
         
            +
                    question_states = tile(question_states, 0, k)
         
     | 
| 151 | 
         
            +
                    question_atts = tile(question_atts, 0, k)
         
     | 
| 152 | 
         
            +
                    
         
     | 
| 153 | 
         
            +
                    output = self.text_decoder(input_ids, 
         
     | 
| 154 | 
         
            +
                                               attention_mask = input_atts, 
         
     | 
| 155 | 
         
            +
                                               encoder_hidden_states = question_states,
         
     | 
| 156 | 
         
            +
                                               encoder_attention_mask = question_atts,     
         
     | 
| 157 | 
         
            +
                                               labels = targets_ids,
         
     | 
| 158 | 
         
            +
                                               return_dict = True, 
         
     | 
| 159 | 
         
            +
                                               reduction = 'none')   
         
     | 
| 160 | 
         
            +
                    
         
     | 
| 161 | 
         
            +
                    log_probs_sum = -output.loss
         
     | 
| 162 | 
         
            +
                    log_probs_sum = log_probs_sum.view(num_ques,k)
         
     | 
| 163 | 
         
            +
             
     | 
| 164 | 
         
            +
                    max_topk_ids = log_probs_sum.argmax(dim=1) 
         
     | 
| 165 | 
         
            +
                    max_ids = topk_ids[max_topk_ids>=0,max_topk_ids]
         
     | 
| 166 | 
         
            +
             
     | 
| 167 | 
         
            +
                    return max_ids
         
     | 
| 168 | 
         
            +
                
         
     | 
| 169 | 
         
            +
                
         
     | 
| 170 | 
         
            +
            def blip_vqa(pretrained='',**kwargs):
         
     | 
| 171 | 
         
            +
                model = BLIP_VQA(**kwargs)
         
     | 
| 172 | 
         
            +
                if pretrained:
         
     | 
| 173 | 
         
            +
                    model,msg = load_checkpoint(model,pretrained)
         
     | 
| 174 | 
         
            +
            #         assert(len(msg.missing_keys)==0)
         
     | 
| 175 | 
         
            +
                return model  
         
     | 
| 176 | 
         
            +
             
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
            def tile(x, dim, n_tile):
         
     | 
| 179 | 
         
            +
                init_dim = x.size(dim)
         
     | 
| 180 | 
         
            +
                repeat_idx = [1] * x.dim()
         
     | 
| 181 | 
         
            +
                repeat_idx[dim] = n_tile
         
     | 
| 182 | 
         
            +
                x = x.repeat(*(repeat_idx))
         
     | 
| 183 | 
         
            +
                order_index = torch.LongTensor(np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)]))
         
     | 
| 184 | 
         
            +
                return torch.index_select(x, dim, order_index.to(x.device))    
         
     | 
| 185 | 
         
            +
                    
         
     | 
| 186 | 
         
            +
                    
         
     | 
    	
        extras/BLIP/models/med.py
    ADDED
    
    | 
         @@ -0,0 +1,955 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            '''
         
     | 
| 2 | 
         
            +
             * Copyright (c) 2022, salesforce.com, inc.
         
     | 
| 3 | 
         
            +
             * All rights reserved.
         
     | 
| 4 | 
         
            +
             * SPDX-License-Identifier: BSD-3-Clause
         
     | 
| 5 | 
         
            +
             * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
         
     | 
| 6 | 
         
            +
             * By Junnan Li
         
     | 
| 7 | 
         
            +
             * Based on huggingface code base
         
     | 
| 8 | 
         
            +
             * https://github.com/huggingface/transformers/blob/v4.15.0/src/transformers/models/bert
         
     | 
| 9 | 
         
            +
            '''
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            import math
         
     | 
| 12 | 
         
            +
            import os
         
     | 
| 13 | 
         
            +
            import warnings
         
     | 
| 14 | 
         
            +
            from dataclasses import dataclass
         
     | 
| 15 | 
         
            +
            from typing import Optional, Tuple
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            import torch
         
     | 
| 18 | 
         
            +
            from torch import Tensor, device, dtype, nn
         
     | 
| 19 | 
         
            +
            import torch.utils.checkpoint
         
     | 
| 20 | 
         
            +
            from torch import nn
         
     | 
| 21 | 
         
            +
            from torch.nn import CrossEntropyLoss
         
     | 
| 22 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
            from transformers.activations import ACT2FN
         
     | 
| 25 | 
         
            +
            from transformers.file_utils import (
         
     | 
| 26 | 
         
            +
                ModelOutput,
         
     | 
| 27 | 
         
            +
            )
         
     | 
| 28 | 
         
            +
            from transformers.modeling_outputs import (
         
     | 
| 29 | 
         
            +
                BaseModelOutputWithPastAndCrossAttentions,
         
     | 
| 30 | 
         
            +
                BaseModelOutputWithPoolingAndCrossAttentions,
         
     | 
| 31 | 
         
            +
                CausalLMOutputWithCrossAttentions,
         
     | 
| 32 | 
         
            +
                MaskedLMOutput,
         
     | 
| 33 | 
         
            +
                MultipleChoiceModelOutput,
         
     | 
| 34 | 
         
            +
                NextSentencePredictorOutput,
         
     | 
| 35 | 
         
            +
                QuestionAnsweringModelOutput,
         
     | 
| 36 | 
         
            +
                SequenceClassifierOutput,
         
     | 
| 37 | 
         
            +
                TokenClassifierOutput,
         
     | 
| 38 | 
         
            +
            )
         
     | 
| 39 | 
         
            +
            from transformers.modeling_utils import (
         
     | 
| 40 | 
         
            +
                PreTrainedModel,
         
     | 
| 41 | 
         
            +
                apply_chunking_to_forward,
         
     | 
| 42 | 
         
            +
                find_pruneable_heads_and_indices,
         
     | 
| 43 | 
         
            +
                prune_linear_layer,
         
     | 
| 44 | 
         
            +
            )
         
     | 
| 45 | 
         
            +
            from transformers.utils import logging
         
     | 
| 46 | 
         
            +
            from transformers.models.bert.configuration_bert import BertConfig
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
            logger = logging.get_logger(__name__)
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
            class BertEmbeddings(nn.Module):
         
     | 
| 53 | 
         
            +
                """Construct the embeddings from word and position embeddings."""
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
                def __init__(self, config):
         
     | 
| 56 | 
         
            +
                    super().__init__()
         
     | 
| 57 | 
         
            +
                    self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
         
     | 
| 58 | 
         
            +
                    self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
                    # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
         
     | 
| 61 | 
         
            +
                    # any TensorFlow checkpoint file
         
     | 
| 62 | 
         
            +
                    self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
         
     | 
| 63 | 
         
            +
                    self.dropout = nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
                    # position_ids (1, len position emb) is contiguous in memory and exported when serialized
         
     | 
| 66 | 
         
            +
                    self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
         
     | 
| 67 | 
         
            +
                    self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
         
     | 
| 68 | 
         
            +
                    
         
     | 
| 69 | 
         
            +
                    self.config = config
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
                def forward(
         
     | 
| 72 | 
         
            +
                    self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
         
     | 
| 73 | 
         
            +
                ):
         
     | 
| 74 | 
         
            +
                    if input_ids is not None:
         
     | 
| 75 | 
         
            +
                        input_shape = input_ids.size()
         
     | 
| 76 | 
         
            +
                    else:
         
     | 
| 77 | 
         
            +
                        input_shape = inputs_embeds.size()[:-1]
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
                    seq_length = input_shape[1]
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                    if position_ids is None:
         
     | 
| 82 | 
         
            +
                        position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
                    if inputs_embeds is None:
         
     | 
| 85 | 
         
            +
                        inputs_embeds = self.word_embeddings(input_ids)
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
                    embeddings = inputs_embeds
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
                    if self.position_embedding_type == "absolute":
         
     | 
| 90 | 
         
            +
                        position_embeddings = self.position_embeddings(position_ids)
         
     | 
| 91 | 
         
            +
                        embeddings += position_embeddings
         
     | 
| 92 | 
         
            +
                    embeddings = self.LayerNorm(embeddings)
         
     | 
| 93 | 
         
            +
                    embeddings = self.dropout(embeddings)
         
     | 
| 94 | 
         
            +
                    return embeddings
         
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
            class BertSelfAttention(nn.Module):
         
     | 
| 98 | 
         
            +
                def __init__(self, config, is_cross_attention):
         
     | 
| 99 | 
         
            +
                    super().__init__()
         
     | 
| 100 | 
         
            +
                    self.config = config
         
     | 
| 101 | 
         
            +
                    if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
         
     | 
| 102 | 
         
            +
                        raise ValueError(
         
     | 
| 103 | 
         
            +
                            "The hidden size (%d) is not a multiple of the number of attention "
         
     | 
| 104 | 
         
            +
                            "heads (%d)" % (config.hidden_size, config.num_attention_heads)
         
     | 
| 105 | 
         
            +
                        )
         
     | 
| 106 | 
         
            +
                    
         
     | 
| 107 | 
         
            +
                    self.num_attention_heads = config.num_attention_heads
         
     | 
| 108 | 
         
            +
                    self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
         
     | 
| 109 | 
         
            +
                    self.all_head_size = self.num_attention_heads * self.attention_head_size
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
                    self.query = nn.Linear(config.hidden_size, self.all_head_size)
         
     | 
| 112 | 
         
            +
                    if is_cross_attention:
         
     | 
| 113 | 
         
            +
                        self.key = nn.Linear(config.encoder_width, self.all_head_size)
         
     | 
| 114 | 
         
            +
                        self.value = nn.Linear(config.encoder_width, self.all_head_size)
         
     | 
| 115 | 
         
            +
                    else:
         
     | 
| 116 | 
         
            +
                        self.key = nn.Linear(config.hidden_size, self.all_head_size)
         
     | 
| 117 | 
         
            +
                        self.value = nn.Linear(config.hidden_size, self.all_head_size)
         
     | 
| 118 | 
         
            +
             
     | 
| 119 | 
         
            +
                    self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
         
     | 
| 120 | 
         
            +
                    self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
         
     | 
| 121 | 
         
            +
                    if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
         
     | 
| 122 | 
         
            +
                        self.max_position_embeddings = config.max_position_embeddings
         
     | 
| 123 | 
         
            +
                        self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
         
     | 
| 124 | 
         
            +
                    self.save_attention = False   
         
     | 
| 125 | 
         
            +
                        
         
     | 
| 126 | 
         
            +
                def save_attn_gradients(self, attn_gradients):
         
     | 
| 127 | 
         
            +
                    self.attn_gradients = attn_gradients
         
     | 
| 128 | 
         
            +
                    
         
     | 
| 129 | 
         
            +
                def get_attn_gradients(self):
         
     | 
| 130 | 
         
            +
                    return self.attn_gradients
         
     | 
| 131 | 
         
            +
                
         
     | 
| 132 | 
         
            +
                def save_attention_map(self, attention_map):
         
     | 
| 133 | 
         
            +
                    self.attention_map = attention_map
         
     | 
| 134 | 
         
            +
                    
         
     | 
| 135 | 
         
            +
                def get_attention_map(self):
         
     | 
| 136 | 
         
            +
                    return self.attention_map
         
     | 
| 137 | 
         
            +
                
         
     | 
| 138 | 
         
            +
                def transpose_for_scores(self, x):
         
     | 
| 139 | 
         
            +
                    new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
         
     | 
| 140 | 
         
            +
                    x = x.view(*new_x_shape)
         
     | 
| 141 | 
         
            +
                    return x.permute(0, 2, 1, 3)
         
     | 
| 142 | 
         
            +
             
     | 
| 143 | 
         
            +
                def forward(
         
     | 
| 144 | 
         
            +
                    self,
         
     | 
| 145 | 
         
            +
                    hidden_states,
         
     | 
| 146 | 
         
            +
                    attention_mask=None,
         
     | 
| 147 | 
         
            +
                    head_mask=None,
         
     | 
| 148 | 
         
            +
                    encoder_hidden_states=None,
         
     | 
| 149 | 
         
            +
                    encoder_attention_mask=None,
         
     | 
| 150 | 
         
            +
                    past_key_value=None,
         
     | 
| 151 | 
         
            +
                    output_attentions=False,
         
     | 
| 152 | 
         
            +
                ):
         
     | 
| 153 | 
         
            +
                    mixed_query_layer = self.query(hidden_states)
         
     | 
| 154 | 
         
            +
             
     | 
| 155 | 
         
            +
                    # If this is instantiated as a cross-attention module, the keys
         
     | 
| 156 | 
         
            +
                    # and values come from an encoder; the attention mask needs to be
         
     | 
| 157 | 
         
            +
                    # such that the encoder's padding tokens are not attended to.
         
     | 
| 158 | 
         
            +
                    is_cross_attention = encoder_hidden_states is not None
         
     | 
| 159 | 
         
            +
             
     | 
| 160 | 
         
            +
                    if is_cross_attention:
         
     | 
| 161 | 
         
            +
                        key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
         
     | 
| 162 | 
         
            +
                        value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
         
     | 
| 163 | 
         
            +
                        attention_mask = encoder_attention_mask
         
     | 
| 164 | 
         
            +
                    elif past_key_value is not None:
         
     | 
| 165 | 
         
            +
                        key_layer = self.transpose_for_scores(self.key(hidden_states))
         
     | 
| 166 | 
         
            +
                        value_layer = self.transpose_for_scores(self.value(hidden_states))
         
     | 
| 167 | 
         
            +
                        key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
         
     | 
| 168 | 
         
            +
                        value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
         
     | 
| 169 | 
         
            +
                    else:
         
     | 
| 170 | 
         
            +
                        key_layer = self.transpose_for_scores(self.key(hidden_states))
         
     | 
| 171 | 
         
            +
                        value_layer = self.transpose_for_scores(self.value(hidden_states))
         
     | 
| 172 | 
         
            +
             
     | 
| 173 | 
         
            +
                    query_layer = self.transpose_for_scores(mixed_query_layer)
         
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
                    past_key_value = (key_layer, value_layer)
         
     | 
| 176 | 
         
            +
             
     | 
| 177 | 
         
            +
                    # Take the dot product between "query" and "key" to get the raw attention scores.
         
     | 
| 178 | 
         
            +
                    attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
         
     | 
| 179 | 
         
            +
             
     | 
| 180 | 
         
            +
                    if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
         
     | 
| 181 | 
         
            +
                        seq_length = hidden_states.size()[1]
         
     | 
| 182 | 
         
            +
                        position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
         
     | 
| 183 | 
         
            +
                        position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
         
     | 
| 184 | 
         
            +
                        distance = position_ids_l - position_ids_r
         
     | 
| 185 | 
         
            +
                        positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
         
     | 
| 186 | 
         
            +
                        positional_embedding = positional_embedding.to(dtype=query_layer.dtype)  # fp16 compatibility
         
     | 
| 187 | 
         
            +
             
     | 
| 188 | 
         
            +
                        if self.position_embedding_type == "relative_key":
         
     | 
| 189 | 
         
            +
                            relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
         
     | 
| 190 | 
         
            +
                            attention_scores = attention_scores + relative_position_scores
         
     | 
| 191 | 
         
            +
                        elif self.position_embedding_type == "relative_key_query":
         
     | 
| 192 | 
         
            +
                            relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
         
     | 
| 193 | 
         
            +
                            relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
         
     | 
| 194 | 
         
            +
                            attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
         
     | 
| 195 | 
         
            +
             
     | 
| 196 | 
         
            +
                    attention_scores = attention_scores / math.sqrt(self.attention_head_size)
         
     | 
| 197 | 
         
            +
                    if attention_mask is not None:
         
     | 
| 198 | 
         
            +
                        # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
         
     | 
| 199 | 
         
            +
                        attention_scores = attention_scores + attention_mask
         
     | 
| 200 | 
         
            +
             
     | 
| 201 | 
         
            +
                    # Normalize the attention scores to probabilities.
         
     | 
| 202 | 
         
            +
                    attention_probs = nn.Softmax(dim=-1)(attention_scores)
         
     | 
| 203 | 
         
            +
                    
         
     | 
| 204 | 
         
            +
                    if is_cross_attention and self.save_attention:
         
     | 
| 205 | 
         
            +
                        self.save_attention_map(attention_probs)
         
     | 
| 206 | 
         
            +
                        attention_probs.register_hook(self.save_attn_gradients)         
         
     | 
| 207 | 
         
            +
             
     | 
| 208 | 
         
            +
                    # This is actually dropping out entire tokens to attend to, which might
         
     | 
| 209 | 
         
            +
                    # seem a bit unusual, but is taken from the original Transformer paper.
         
     | 
| 210 | 
         
            +
                    attention_probs_dropped = self.dropout(attention_probs)
         
     | 
| 211 | 
         
            +
             
     | 
| 212 | 
         
            +
                    # Mask heads if we want to
         
     | 
| 213 | 
         
            +
                    if head_mask is not None:
         
     | 
| 214 | 
         
            +
                        attention_probs_dropped = attention_probs_dropped * head_mask
         
     | 
| 215 | 
         
            +
             
     | 
| 216 | 
         
            +
                    context_layer = torch.matmul(attention_probs_dropped, value_layer)
         
     | 
| 217 | 
         
            +
             
     | 
| 218 | 
         
            +
                    context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
         
     | 
| 219 | 
         
            +
                    new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
         
     | 
| 220 | 
         
            +
                    context_layer = context_layer.view(*new_context_layer_shape)
         
     | 
| 221 | 
         
            +
             
     | 
| 222 | 
         
            +
                    outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
         
     | 
| 223 | 
         
            +
             
     | 
| 224 | 
         
            +
                    outputs = outputs + (past_key_value,)
         
     | 
| 225 | 
         
            +
                    return outputs
         
     | 
| 226 | 
         
            +
             
     | 
| 227 | 
         
            +
             
     | 
| 228 | 
         
            +
            class BertSelfOutput(nn.Module):
         
     | 
| 229 | 
         
            +
                def __init__(self, config):
         
     | 
| 230 | 
         
            +
                    super().__init__()
         
     | 
| 231 | 
         
            +
                    self.dense = nn.Linear(config.hidden_size, config.hidden_size)
         
     | 
| 232 | 
         
            +
                    self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
         
     | 
| 233 | 
         
            +
                    self.dropout = nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 234 | 
         
            +
             
     | 
| 235 | 
         
            +
                def forward(self, hidden_states, input_tensor):
         
     | 
| 236 | 
         
            +
                    hidden_states = self.dense(hidden_states)
         
     | 
| 237 | 
         
            +
                    hidden_states = self.dropout(hidden_states)
         
     | 
| 238 | 
         
            +
                    hidden_states = self.LayerNorm(hidden_states + input_tensor)
         
     | 
| 239 | 
         
            +
                    return hidden_states
         
     | 
| 240 | 
         
            +
             
     | 
| 241 | 
         
            +
             
     | 
| 242 | 
         
            +
            class BertAttention(nn.Module):
         
     | 
| 243 | 
         
            +
                def __init__(self, config, is_cross_attention=False):
         
     | 
| 244 | 
         
            +
                    super().__init__()
         
     | 
| 245 | 
         
            +
                    self.self = BertSelfAttention(config, is_cross_attention)
         
     | 
| 246 | 
         
            +
                    self.output = BertSelfOutput(config)
         
     | 
| 247 | 
         
            +
                    self.pruned_heads = set()
         
     | 
| 248 | 
         
            +
             
     | 
| 249 | 
         
            +
                def prune_heads(self, heads):
         
     | 
| 250 | 
         
            +
                    if len(heads) == 0:
         
     | 
| 251 | 
         
            +
                        return
         
     | 
| 252 | 
         
            +
                    heads, index = find_pruneable_heads_and_indices(
         
     | 
| 253 | 
         
            +
                        heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
         
     | 
| 254 | 
         
            +
                    )
         
     | 
| 255 | 
         
            +
             
     | 
| 256 | 
         
            +
                    # Prune linear layers
         
     | 
| 257 | 
         
            +
                    self.self.query = prune_linear_layer(self.self.query, index)
         
     | 
| 258 | 
         
            +
                    self.self.key = prune_linear_layer(self.self.key, index)
         
     | 
| 259 | 
         
            +
                    self.self.value = prune_linear_layer(self.self.value, index)
         
     | 
| 260 | 
         
            +
                    self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
         
     | 
| 261 | 
         
            +
             
     | 
| 262 | 
         
            +
                    # Update hyper params and store pruned heads
         
     | 
| 263 | 
         
            +
                    self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
         
     | 
| 264 | 
         
            +
                    self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
         
     | 
| 265 | 
         
            +
                    self.pruned_heads = self.pruned_heads.union(heads)
         
     | 
| 266 | 
         
            +
             
     | 
| 267 | 
         
            +
                def forward(
         
     | 
| 268 | 
         
            +
                    self,
         
     | 
| 269 | 
         
            +
                    hidden_states,
         
     | 
| 270 | 
         
            +
                    attention_mask=None,
         
     | 
| 271 | 
         
            +
                    head_mask=None,
         
     | 
| 272 | 
         
            +
                    encoder_hidden_states=None,
         
     | 
| 273 | 
         
            +
                    encoder_attention_mask=None,
         
     | 
| 274 | 
         
            +
                    past_key_value=None,
         
     | 
| 275 | 
         
            +
                    output_attentions=False,
         
     | 
| 276 | 
         
            +
                ):
         
     | 
| 277 | 
         
            +
                    self_outputs = self.self(
         
     | 
| 278 | 
         
            +
                        hidden_states,
         
     | 
| 279 | 
         
            +
                        attention_mask,
         
     | 
| 280 | 
         
            +
                        head_mask,
         
     | 
| 281 | 
         
            +
                        encoder_hidden_states,
         
     | 
| 282 | 
         
            +
                        encoder_attention_mask,
         
     | 
| 283 | 
         
            +
                        past_key_value,
         
     | 
| 284 | 
         
            +
                        output_attentions,
         
     | 
| 285 | 
         
            +
                    )
         
     | 
| 286 | 
         
            +
                    attention_output = self.output(self_outputs[0], hidden_states)
         
     | 
| 287 | 
         
            +
                    outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
         
     | 
| 288 | 
         
            +
                    return outputs
         
     | 
| 289 | 
         
            +
             
     | 
| 290 | 
         
            +
             
     | 
| 291 | 
         
            +
            class BertIntermediate(nn.Module):
         
     | 
| 292 | 
         
            +
                def __init__(self, config):
         
     | 
| 293 | 
         
            +
                    super().__init__()
         
     | 
| 294 | 
         
            +
                    self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
         
     | 
| 295 | 
         
            +
                    if isinstance(config.hidden_act, str):
         
     | 
| 296 | 
         
            +
                        self.intermediate_act_fn = ACT2FN[config.hidden_act]
         
     | 
| 297 | 
         
            +
                    else:
         
     | 
| 298 | 
         
            +
                        self.intermediate_act_fn = config.hidden_act
         
     | 
| 299 | 
         
            +
             
     | 
| 300 | 
         
            +
                def forward(self, hidden_states):
         
     | 
| 301 | 
         
            +
                    hidden_states = self.dense(hidden_states)
         
     | 
| 302 | 
         
            +
                    hidden_states = self.intermediate_act_fn(hidden_states)
         
     | 
| 303 | 
         
            +
                    return hidden_states
         
     | 
| 304 | 
         
            +
             
     | 
| 305 | 
         
            +
             
     | 
| 306 | 
         
            +
            class BertOutput(nn.Module):
         
     | 
| 307 | 
         
            +
                def __init__(self, config):
         
     | 
| 308 | 
         
            +
                    super().__init__()
         
     | 
| 309 | 
         
            +
                    self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
         
     | 
| 310 | 
         
            +
                    self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
         
     | 
| 311 | 
         
            +
                    self.dropout = nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 312 | 
         
            +
             
     | 
| 313 | 
         
            +
                def forward(self, hidden_states, input_tensor):
         
     | 
| 314 | 
         
            +
                    hidden_states = self.dense(hidden_states)
         
     | 
| 315 | 
         
            +
                    hidden_states = self.dropout(hidden_states)
         
     | 
| 316 | 
         
            +
                    hidden_states = self.LayerNorm(hidden_states + input_tensor)
         
     | 
| 317 | 
         
            +
                    return hidden_states
         
     | 
| 318 | 
         
            +
             
     | 
| 319 | 
         
            +
             
     | 
| 320 | 
         
            +
            class BertLayer(nn.Module):
         
     | 
| 321 | 
         
            +
                def __init__(self, config, layer_num):
         
     | 
| 322 | 
         
            +
                    super().__init__()
         
     | 
| 323 | 
         
            +
                    self.config = config
         
     | 
| 324 | 
         
            +
                    self.chunk_size_feed_forward = config.chunk_size_feed_forward
         
     | 
| 325 | 
         
            +
                    self.seq_len_dim = 1
         
     | 
| 326 | 
         
            +
                    self.attention = BertAttention(config)      
         
     | 
| 327 | 
         
            +
                    self.layer_num = layer_num          
         
     | 
| 328 | 
         
            +
                    if self.config.add_cross_attention:
         
     | 
| 329 | 
         
            +
                        self.crossattention = BertAttention(config, is_cross_attention=self.config.add_cross_attention)
         
     | 
| 330 | 
         
            +
                    self.intermediate = BertIntermediate(config)
         
     | 
| 331 | 
         
            +
                    self.output = BertOutput(config)
         
     | 
| 332 | 
         
            +
             
     | 
| 333 | 
         
            +
                def forward(
         
     | 
| 334 | 
         
            +
                    self,
         
     | 
| 335 | 
         
            +
                    hidden_states,
         
     | 
| 336 | 
         
            +
                    attention_mask=None,
         
     | 
| 337 | 
         
            +
                    head_mask=None,
         
     | 
| 338 | 
         
            +
                    encoder_hidden_states=None,
         
     | 
| 339 | 
         
            +
                    encoder_attention_mask=None,
         
     | 
| 340 | 
         
            +
                    past_key_value=None,
         
     | 
| 341 | 
         
            +
                    output_attentions=False,
         
     | 
| 342 | 
         
            +
                    mode=None,
         
     | 
| 343 | 
         
            +
                ):
         
     | 
| 344 | 
         
            +
                    # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
         
     | 
| 345 | 
         
            +
                    self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
         
     | 
| 346 | 
         
            +
                    self_attention_outputs = self.attention(
         
     | 
| 347 | 
         
            +
                        hidden_states,
         
     | 
| 348 | 
         
            +
                        attention_mask,
         
     | 
| 349 | 
         
            +
                        head_mask,
         
     | 
| 350 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 351 | 
         
            +
                        past_key_value=self_attn_past_key_value,
         
     | 
| 352 | 
         
            +
                    )
         
     | 
| 353 | 
         
            +
                    attention_output = self_attention_outputs[0]
         
     | 
| 354 | 
         
            +
             
     | 
| 355 | 
         
            +
                    outputs = self_attention_outputs[1:-1]
         
     | 
| 356 | 
         
            +
                    present_key_value = self_attention_outputs[-1]
         
     | 
| 357 | 
         
            +
             
     | 
| 358 | 
         
            +
                    if mode=='multimodal':
         
     | 
| 359 | 
         
            +
                        assert encoder_hidden_states is not None, "encoder_hidden_states must be given for cross-attention layers"
         
     | 
| 360 | 
         
            +
             
     | 
| 361 | 
         
            +
                        cross_attention_outputs = self.crossattention(
         
     | 
| 362 | 
         
            +
                            attention_output,
         
     | 
| 363 | 
         
            +
                            attention_mask,
         
     | 
| 364 | 
         
            +
                            head_mask,
         
     | 
| 365 | 
         
            +
                            encoder_hidden_states,
         
     | 
| 366 | 
         
            +
                            encoder_attention_mask,
         
     | 
| 367 | 
         
            +
                            output_attentions=output_attentions,
         
     | 
| 368 | 
         
            +
                        )
         
     | 
| 369 | 
         
            +
                        attention_output = cross_attention_outputs[0]
         
     | 
| 370 | 
         
            +
                        outputs = outputs + cross_attention_outputs[1:-1]  # add cross attentions if we output attention weights                               
         
     | 
| 371 | 
         
            +
                    layer_output = apply_chunking_to_forward(
         
     | 
| 372 | 
         
            +
                        self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
         
     | 
| 373 | 
         
            +
                    )
         
     | 
| 374 | 
         
            +
                    outputs = (layer_output,) + outputs
         
     | 
| 375 | 
         
            +
             
     | 
| 376 | 
         
            +
                    outputs = outputs + (present_key_value,)
         
     | 
| 377 | 
         
            +
             
     | 
| 378 | 
         
            +
                    return outputs
         
     | 
| 379 | 
         
            +
             
     | 
| 380 | 
         
            +
                def feed_forward_chunk(self, attention_output):
         
     | 
| 381 | 
         
            +
                    intermediate_output = self.intermediate(attention_output)
         
     | 
| 382 | 
         
            +
                    layer_output = self.output(intermediate_output, attention_output)
         
     | 
| 383 | 
         
            +
                    return layer_output
         
     | 
| 384 | 
         
            +
             
     | 
| 385 | 
         
            +
             
     | 
| 386 | 
         
            +
            class BertEncoder(nn.Module):
         
     | 
| 387 | 
         
            +
                def __init__(self, config):
         
     | 
| 388 | 
         
            +
                    super().__init__()
         
     | 
| 389 | 
         
            +
                    self.config = config
         
     | 
| 390 | 
         
            +
                    self.layer = nn.ModuleList([BertLayer(config,i) for i in range(config.num_hidden_layers)])
         
     | 
| 391 | 
         
            +
                    self.gradient_checkpointing = False
         
     | 
| 392 | 
         
            +
             
     | 
| 393 | 
         
            +
                def forward(
         
     | 
| 394 | 
         
            +
                    self,
         
     | 
| 395 | 
         
            +
                    hidden_states,
         
     | 
| 396 | 
         
            +
                    attention_mask=None,
         
     | 
| 397 | 
         
            +
                    head_mask=None,
         
     | 
| 398 | 
         
            +
                    encoder_hidden_states=None,
         
     | 
| 399 | 
         
            +
                    encoder_attention_mask=None,
         
     | 
| 400 | 
         
            +
                    past_key_values=None,
         
     | 
| 401 | 
         
            +
                    use_cache=None,
         
     | 
| 402 | 
         
            +
                    output_attentions=False,
         
     | 
| 403 | 
         
            +
                    output_hidden_states=False,
         
     | 
| 404 | 
         
            +
                    return_dict=True,
         
     | 
| 405 | 
         
            +
                    mode='multimodal',
         
     | 
| 406 | 
         
            +
                ):
         
     | 
| 407 | 
         
            +
                    all_hidden_states = () if output_hidden_states else None
         
     | 
| 408 | 
         
            +
                    all_self_attentions = () if output_attentions else None
         
     | 
| 409 | 
         
            +
                    all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
         
     | 
| 410 | 
         
            +
             
     | 
| 411 | 
         
            +
                    next_decoder_cache = () if use_cache else None
         
     | 
| 412 | 
         
            +
                           
         
     | 
| 413 | 
         
            +
                    for i in range(self.config.num_hidden_layers):
         
     | 
| 414 | 
         
            +
                        layer_module = self.layer[i]
         
     | 
| 415 | 
         
            +
                        if output_hidden_states:
         
     | 
| 416 | 
         
            +
                            all_hidden_states = all_hidden_states + (hidden_states,)
         
     | 
| 417 | 
         
            +
             
     | 
| 418 | 
         
            +
                        layer_head_mask = head_mask[i] if head_mask is not None else None
         
     | 
| 419 | 
         
            +
                        past_key_value = past_key_values[i] if past_key_values is not None else None
         
     | 
| 420 | 
         
            +
             
     | 
| 421 | 
         
            +
                        if self.gradient_checkpointing and self.training:
         
     | 
| 422 | 
         
            +
             
     | 
| 423 | 
         
            +
                            if use_cache:
         
     | 
| 424 | 
         
            +
                                logger.warn(
         
     | 
| 425 | 
         
            +
                                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
         
     | 
| 426 | 
         
            +
                                )
         
     | 
| 427 | 
         
            +
                                use_cache = False
         
     | 
| 428 | 
         
            +
             
     | 
| 429 | 
         
            +
                            def create_custom_forward(module):
         
     | 
| 430 | 
         
            +
                                def custom_forward(*inputs):
         
     | 
| 431 | 
         
            +
                                    return module(*inputs, past_key_value, output_attentions)
         
     | 
| 432 | 
         
            +
             
     | 
| 433 | 
         
            +
                                return custom_forward
         
     | 
| 434 | 
         
            +
             
     | 
| 435 | 
         
            +
                            layer_outputs = torch.utils.checkpoint.checkpoint(
         
     | 
| 436 | 
         
            +
                                create_custom_forward(layer_module),
         
     | 
| 437 | 
         
            +
                                hidden_states,
         
     | 
| 438 | 
         
            +
                                attention_mask,
         
     | 
| 439 | 
         
            +
                                layer_head_mask,
         
     | 
| 440 | 
         
            +
                                encoder_hidden_states,
         
     | 
| 441 | 
         
            +
                                encoder_attention_mask,
         
     | 
| 442 | 
         
            +
                                mode=mode,
         
     | 
| 443 | 
         
            +
                            )
         
     | 
| 444 | 
         
            +
                        else:
         
     | 
| 445 | 
         
            +
                            layer_outputs = layer_module(
         
     | 
| 446 | 
         
            +
                                hidden_states,
         
     | 
| 447 | 
         
            +
                                attention_mask,
         
     | 
| 448 | 
         
            +
                                layer_head_mask,
         
     | 
| 449 | 
         
            +
                                encoder_hidden_states,
         
     | 
| 450 | 
         
            +
                                encoder_attention_mask,
         
     | 
| 451 | 
         
            +
                                past_key_value,
         
     | 
| 452 | 
         
            +
                                output_attentions,
         
     | 
| 453 | 
         
            +
                                mode=mode,
         
     | 
| 454 | 
         
            +
                            )
         
     | 
| 455 | 
         
            +
             
     | 
| 456 | 
         
            +
                        hidden_states = layer_outputs[0]
         
     | 
| 457 | 
         
            +
                        if use_cache:
         
     | 
| 458 | 
         
            +
                            next_decoder_cache += (layer_outputs[-1],)
         
     | 
| 459 | 
         
            +
                        if output_attentions:
         
     | 
| 460 | 
         
            +
                            all_self_attentions = all_self_attentions + (layer_outputs[1],)
         
     | 
| 461 | 
         
            +
             
     | 
| 462 | 
         
            +
                    if output_hidden_states:
         
     | 
| 463 | 
         
            +
                        all_hidden_states = all_hidden_states + (hidden_states,)
         
     | 
| 464 | 
         
            +
             
     | 
| 465 | 
         
            +
                    if not return_dict:
         
     | 
| 466 | 
         
            +
                        return tuple(
         
     | 
| 467 | 
         
            +
                            v
         
     | 
| 468 | 
         
            +
                            for v in [
         
     | 
| 469 | 
         
            +
                                hidden_states,
         
     | 
| 470 | 
         
            +
                                next_decoder_cache,
         
     | 
| 471 | 
         
            +
                                all_hidden_states,
         
     | 
| 472 | 
         
            +
                                all_self_attentions,
         
     | 
| 473 | 
         
            +
                                all_cross_attentions,
         
     | 
| 474 | 
         
            +
                            ]
         
     | 
| 475 | 
         
            +
                            if v is not None
         
     | 
| 476 | 
         
            +
                        )
         
     | 
| 477 | 
         
            +
                    return BaseModelOutputWithPastAndCrossAttentions(
         
     | 
| 478 | 
         
            +
                        last_hidden_state=hidden_states,
         
     | 
| 479 | 
         
            +
                        past_key_values=next_decoder_cache,
         
     | 
| 480 | 
         
            +
                        hidden_states=all_hidden_states,
         
     | 
| 481 | 
         
            +
                        attentions=all_self_attentions,
         
     | 
| 482 | 
         
            +
                        cross_attentions=all_cross_attentions,
         
     | 
| 483 | 
         
            +
                    )
         
     | 
| 484 | 
         
            +
             
     | 
| 485 | 
         
            +
             
     | 
| 486 | 
         
            +
            class BertPooler(nn.Module):
         
     | 
| 487 | 
         
            +
                def __init__(self, config):
         
     | 
| 488 | 
         
            +
                    super().__init__()
         
     | 
| 489 | 
         
            +
                    self.dense = nn.Linear(config.hidden_size, config.hidden_size)
         
     | 
| 490 | 
         
            +
                    self.activation = nn.Tanh()
         
     | 
| 491 | 
         
            +
             
     | 
| 492 | 
         
            +
                def forward(self, hidden_states):
         
     | 
| 493 | 
         
            +
                    # We "pool" the model by simply taking the hidden state corresponding
         
     | 
| 494 | 
         
            +
                    # to the first token.
         
     | 
| 495 | 
         
            +
                    first_token_tensor = hidden_states[:, 0]
         
     | 
| 496 | 
         
            +
                    pooled_output = self.dense(first_token_tensor)
         
     | 
| 497 | 
         
            +
                    pooled_output = self.activation(pooled_output)
         
     | 
| 498 | 
         
            +
                    return pooled_output
         
     | 
| 499 | 
         
            +
             
     | 
| 500 | 
         
            +
             
     | 
| 501 | 
         
            +
            class BertPredictionHeadTransform(nn.Module):
         
     | 
| 502 | 
         
            +
                def __init__(self, config):
         
     | 
| 503 | 
         
            +
                    super().__init__()
         
     | 
| 504 | 
         
            +
                    self.dense = nn.Linear(config.hidden_size, config.hidden_size)
         
     | 
| 505 | 
         
            +
                    if isinstance(config.hidden_act, str):
         
     | 
| 506 | 
         
            +
                        self.transform_act_fn = ACT2FN[config.hidden_act]
         
     | 
| 507 | 
         
            +
                    else:
         
     | 
| 508 | 
         
            +
                        self.transform_act_fn = config.hidden_act
         
     | 
| 509 | 
         
            +
                    self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
         
     | 
| 510 | 
         
            +
             
     | 
| 511 | 
         
            +
                def forward(self, hidden_states):
         
     | 
| 512 | 
         
            +
                    hidden_states = self.dense(hidden_states)
         
     | 
| 513 | 
         
            +
                    hidden_states = self.transform_act_fn(hidden_states)
         
     | 
| 514 | 
         
            +
                    hidden_states = self.LayerNorm(hidden_states)
         
     | 
| 515 | 
         
            +
                    return hidden_states
         
     | 
| 516 | 
         
            +
             
     | 
| 517 | 
         
            +
             
     | 
| 518 | 
         
            +
            class BertLMPredictionHead(nn.Module):
         
     | 
| 519 | 
         
            +
                def __init__(self, config):
         
     | 
| 520 | 
         
            +
                    super().__init__()
         
     | 
| 521 | 
         
            +
                    self.transform = BertPredictionHeadTransform(config)
         
     | 
| 522 | 
         
            +
             
     | 
| 523 | 
         
            +
                    # The output weights are the same as the input embeddings, but there is
         
     | 
| 524 | 
         
            +
                    # an output-only bias for each token.
         
     | 
| 525 | 
         
            +
                    self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
         
     | 
| 526 | 
         
            +
             
     | 
| 527 | 
         
            +
                    self.bias = nn.Parameter(torch.zeros(config.vocab_size))
         
     | 
| 528 | 
         
            +
             
     | 
| 529 | 
         
            +
                    # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
         
     | 
| 530 | 
         
            +
                    self.decoder.bias = self.bias
         
     | 
| 531 | 
         
            +
             
     | 
| 532 | 
         
            +
                def forward(self, hidden_states):
         
     | 
| 533 | 
         
            +
                    hidden_states = self.transform(hidden_states)
         
     | 
| 534 | 
         
            +
                    hidden_states = self.decoder(hidden_states)
         
     | 
| 535 | 
         
            +
                    return hidden_states
         
     | 
| 536 | 
         
            +
             
     | 
| 537 | 
         
            +
             
     | 
| 538 | 
         
            +
            class BertOnlyMLMHead(nn.Module):
         
     | 
| 539 | 
         
            +
                def __init__(self, config):
         
     | 
| 540 | 
         
            +
                    super().__init__()
         
     | 
| 541 | 
         
            +
                    self.predictions = BertLMPredictionHead(config)
         
     | 
| 542 | 
         
            +
             
     | 
| 543 | 
         
            +
                def forward(self, sequence_output):
         
     | 
| 544 | 
         
            +
                    prediction_scores = self.predictions(sequence_output)
         
     | 
| 545 | 
         
            +
                    return prediction_scores
         
     | 
| 546 | 
         
            +
             
     | 
| 547 | 
         
            +
             
     | 
| 548 | 
         
            +
            class BertPreTrainedModel(PreTrainedModel):
         
     | 
| 549 | 
         
            +
                """
         
     | 
| 550 | 
         
            +
                An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
         
     | 
| 551 | 
         
            +
                models.
         
     | 
| 552 | 
         
            +
                """
         
     | 
| 553 | 
         
            +
             
     | 
| 554 | 
         
            +
                config_class = BertConfig
         
     | 
| 555 | 
         
            +
                base_model_prefix = "bert"
         
     | 
| 556 | 
         
            +
                _keys_to_ignore_on_load_missing = [r"position_ids"]
         
     | 
| 557 | 
         
            +
             
     | 
| 558 | 
         
            +
                def _init_weights(self, module):
         
     | 
| 559 | 
         
            +
                    """ Initialize the weights """
         
     | 
| 560 | 
         
            +
                    if isinstance(module, (nn.Linear, nn.Embedding)):
         
     | 
| 561 | 
         
            +
                        # Slightly different from the TF version which uses truncated_normal for initialization
         
     | 
| 562 | 
         
            +
                        # cf https://github.com/pytorch/pytorch/pull/5617
         
     | 
| 563 | 
         
            +
                        module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
         
     | 
| 564 | 
         
            +
                    elif isinstance(module, nn.LayerNorm):
         
     | 
| 565 | 
         
            +
                        module.bias.data.zero_()
         
     | 
| 566 | 
         
            +
                        module.weight.data.fill_(1.0)
         
     | 
| 567 | 
         
            +
                    if isinstance(module, nn.Linear) and module.bias is not None:
         
     | 
| 568 | 
         
            +
                        module.bias.data.zero_()
         
     | 
| 569 | 
         
            +
             
     | 
| 570 | 
         
            +
             
     | 
| 571 | 
         
            +
            class BertModel(BertPreTrainedModel):
         
     | 
| 572 | 
         
            +
                """
         
     | 
| 573 | 
         
            +
                The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
         
     | 
| 574 | 
         
            +
                cross-attention is added between the self-attention layers, following the architecture described in `Attention is
         
     | 
| 575 | 
         
            +
                all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
         
     | 
| 576 | 
         
            +
                Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
         
     | 
| 577 | 
         
            +
                argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
         
     | 
| 578 | 
         
            +
                input to the forward pass.
         
     | 
| 579 | 
         
            +
                """
         
     | 
| 580 | 
         
            +
             
     | 
| 581 | 
         
            +
                def __init__(self, config, add_pooling_layer=True):
         
     | 
| 582 | 
         
            +
                    super().__init__(config)
         
     | 
| 583 | 
         
            +
                    self.config = config
         
     | 
| 584 | 
         
            +
             
     | 
| 585 | 
         
            +
                    self.embeddings = BertEmbeddings(config)
         
     | 
| 586 | 
         
            +
                    
         
     | 
| 587 | 
         
            +
                    self.encoder = BertEncoder(config)
         
     | 
| 588 | 
         
            +
             
     | 
| 589 | 
         
            +
                    self.pooler = BertPooler(config) if add_pooling_layer else None
         
     | 
| 590 | 
         
            +
             
     | 
| 591 | 
         
            +
                    self.init_weights()
         
     | 
| 592 | 
         
            +
             
         
     | 
| 593 | 
         
            +
             
     | 
| 594 | 
         
            +
                def get_input_embeddings(self):
         
     | 
| 595 | 
         
            +
                    return self.embeddings.word_embeddings
         
     | 
| 596 | 
         
            +
             
     | 
| 597 | 
         
            +
                def set_input_embeddings(self, value):
         
     | 
| 598 | 
         
            +
                    self.embeddings.word_embeddings = value
         
     | 
| 599 | 
         
            +
             
     | 
| 600 | 
         
            +
                def _prune_heads(self, heads_to_prune):
         
     | 
| 601 | 
         
            +
                    """
         
     | 
| 602 | 
         
            +
                    Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
         
     | 
| 603 | 
         
            +
                    class PreTrainedModel
         
     | 
| 604 | 
         
            +
                    """
         
     | 
| 605 | 
         
            +
                    for layer, heads in heads_to_prune.items():
         
     | 
| 606 | 
         
            +
                        self.encoder.layer[layer].attention.prune_heads(heads)
         
     | 
| 607 | 
         
            +
             
     | 
| 608 | 
         
            +
                
         
     | 
| 609 | 
         
            +
                def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool) -> Tensor:
         
     | 
| 610 | 
         
            +
                    """
         
     | 
| 611 | 
         
            +
                    Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
         
     | 
| 612 | 
         
            +
             
     | 
| 613 | 
         
            +
                    Arguments:
         
     | 
| 614 | 
         
            +
                        attention_mask (:obj:`torch.Tensor`):
         
     | 
| 615 | 
         
            +
                            Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
         
     | 
| 616 | 
         
            +
                        input_shape (:obj:`Tuple[int]`):
         
     | 
| 617 | 
         
            +
                            The shape of the input to the model.
         
     | 
| 618 | 
         
            +
                        device: (:obj:`torch.device`):
         
     | 
| 619 | 
         
            +
                            The device of the input to the model.
         
     | 
| 620 | 
         
            +
             
     | 
| 621 | 
         
            +
                    Returns:
         
     | 
| 622 | 
         
            +
                        :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
         
     | 
| 623 | 
         
            +
                    """
         
     | 
| 624 | 
         
            +
                    # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
         
     | 
| 625 | 
         
            +
                    # ourselves in which case we just need to make it broadcastable to all heads.
         
     | 
| 626 | 
         
            +
                    if attention_mask.dim() == 3:
         
     | 
| 627 | 
         
            +
                        extended_attention_mask = attention_mask[:, None, :, :]
         
     | 
| 628 | 
         
            +
                    elif attention_mask.dim() == 2:
         
     | 
| 629 | 
         
            +
                        # Provided a padding mask of dimensions [batch_size, seq_length]
         
     | 
| 630 | 
         
            +
                        # - if the model is a decoder, apply a causal mask in addition to the padding mask
         
     | 
| 631 | 
         
            +
                        # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
         
     | 
| 632 | 
         
            +
                        if is_decoder:
         
     | 
| 633 | 
         
            +
                            batch_size, seq_length = input_shape
         
     | 
| 634 | 
         
            +
             
     | 
| 635 | 
         
            +
                            seq_ids = torch.arange(seq_length, device=device)
         
     | 
| 636 | 
         
            +
                            causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
         
     | 
| 637 | 
         
            +
                            # in case past_key_values are used we need to add a prefix ones mask to the causal mask
         
     | 
| 638 | 
         
            +
                            # causal and attention masks must have same type with pytorch version < 1.3
         
     | 
| 639 | 
         
            +
                            causal_mask = causal_mask.to(attention_mask.dtype)
         
     | 
| 640 | 
         
            +
               
         
     | 
| 641 | 
         
            +
                            if causal_mask.shape[1] < attention_mask.shape[1]:
         
     | 
| 642 | 
         
            +
                                prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
         
     | 
| 643 | 
         
            +
                                causal_mask = torch.cat(
         
     | 
| 644 | 
         
            +
                                    [
         
     | 
| 645 | 
         
            +
                                        torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
         
     | 
| 646 | 
         
            +
                                        causal_mask,
         
     | 
| 647 | 
         
            +
                                    ],
         
     | 
| 648 | 
         
            +
                                    axis=-1,
         
     | 
| 649 | 
         
            +
                                )                     
         
     | 
| 650 | 
         
            +
             
     | 
| 651 | 
         
            +
                            extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
         
     | 
| 652 | 
         
            +
                        else:
         
     | 
| 653 | 
         
            +
                            extended_attention_mask = attention_mask[:, None, None, :]
         
     | 
| 654 | 
         
            +
                    else:
         
     | 
| 655 | 
         
            +
                        raise ValueError(
         
     | 
| 656 | 
         
            +
                            "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
         
     | 
| 657 | 
         
            +
                                input_shape, attention_mask.shape
         
     | 
| 658 | 
         
            +
                            )
         
     | 
| 659 | 
         
            +
                        )
         
     | 
| 660 | 
         
            +
             
     | 
| 661 | 
         
            +
                    # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
         
     | 
| 662 | 
         
            +
                    # masked positions, this operation will create a tensor which is 0.0 for
         
     | 
| 663 | 
         
            +
                    # positions we want to attend and -10000.0 for masked positions.
         
     | 
| 664 | 
         
            +
                    # Since we are adding it to the raw scores before the softmax, this is
         
     | 
| 665 | 
         
            +
                    # effectively the same as removing these entirely.
         
     | 
| 666 | 
         
            +
                    extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
         
     | 
| 667 | 
         
            +
                    extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
         
     | 
| 668 | 
         
            +
                    return extended_attention_mask
         
     | 
| 669 | 
         
            +
                
         
     | 
| 670 | 
         
            +
                def forward(
         
     | 
| 671 | 
         
            +
                    self,
         
     | 
| 672 | 
         
            +
                    input_ids=None,
         
     | 
| 673 | 
         
            +
                    attention_mask=None,
         
     | 
| 674 | 
         
            +
                    position_ids=None,
         
     | 
| 675 | 
         
            +
                    head_mask=None,
         
     | 
| 676 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 677 | 
         
            +
                    encoder_embeds=None,
         
     | 
| 678 | 
         
            +
                    encoder_hidden_states=None,
         
     | 
| 679 | 
         
            +
                    encoder_attention_mask=None,
         
     | 
| 680 | 
         
            +
                    past_key_values=None,
         
     | 
| 681 | 
         
            +
                    use_cache=None,
         
     | 
| 682 | 
         
            +
                    output_attentions=None,
         
     | 
| 683 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 684 | 
         
            +
                    return_dict=None,
         
     | 
| 685 | 
         
            +
                    is_decoder=False,
         
     | 
| 686 | 
         
            +
                    mode='multimodal',
         
     | 
| 687 | 
         
            +
                ):
         
     | 
| 688 | 
         
            +
                    r"""
         
     | 
| 689 | 
         
            +
                    encoder_hidden_states  (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
         
     | 
| 690 | 
         
            +
                        Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
         
     | 
| 691 | 
         
            +
                        the model is configured as a decoder.
         
     | 
| 692 | 
         
            +
                    encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
         
     | 
| 693 | 
         
            +
                        Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
         
     | 
| 694 | 
         
            +
                        the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
         
     | 
| 695 | 
         
            +
                        - 1 for tokens that are **not masked**,
         
     | 
| 696 | 
         
            +
                        - 0 for tokens that are **masked**.
         
     | 
| 697 | 
         
            +
                    past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
         
     | 
| 698 | 
         
            +
                        Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
         
     | 
| 699 | 
         
            +
                        If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
         
     | 
| 700 | 
         
            +
                        (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
         
     | 
| 701 | 
         
            +
                        instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
         
     | 
| 702 | 
         
            +
                    use_cache (:obj:`bool`, `optional`):
         
     | 
| 703 | 
         
            +
                        If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
         
     | 
| 704 | 
         
            +
                        decoding (see :obj:`past_key_values`).
         
     | 
| 705 | 
         
            +
                    """
         
     | 
| 706 | 
         
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         
     | 
| 707 | 
         
            +
                    output_hidden_states = (
         
     | 
| 708 | 
         
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         
     | 
| 709 | 
         
            +
                    )
         
     | 
| 710 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 711 | 
         
            +
             
     | 
| 712 | 
         
            +
                    if is_decoder:
         
     | 
| 713 | 
         
            +
                        use_cache = use_cache if use_cache is not None else self.config.use_cache
         
     | 
| 714 | 
         
            +
                    else:
         
     | 
| 715 | 
         
            +
                        use_cache = False
         
     | 
| 716 | 
         
            +
             
     | 
| 717 | 
         
            +
                    if input_ids is not None and inputs_embeds is not None:
         
     | 
| 718 | 
         
            +
                        raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
         
     | 
| 719 | 
         
            +
                    elif input_ids is not None:
         
     | 
| 720 | 
         
            +
                        input_shape = input_ids.size()
         
     | 
| 721 | 
         
            +
                        batch_size, seq_length = input_shape
         
     | 
| 722 | 
         
            +
                        device = input_ids.device
         
     | 
| 723 | 
         
            +
                    elif inputs_embeds is not None:
         
     | 
| 724 | 
         
            +
                        input_shape = inputs_embeds.size()[:-1]
         
     | 
| 725 | 
         
            +
                        batch_size, seq_length = input_shape
         
     | 
| 726 | 
         
            +
                        device = inputs_embeds.device
         
     | 
| 727 | 
         
            +
                    elif encoder_embeds is not None:    
         
     | 
| 728 | 
         
            +
                        input_shape = encoder_embeds.size()[:-1]
         
     | 
| 729 | 
         
            +
                        batch_size, seq_length = input_shape 
         
     | 
| 730 | 
         
            +
                        device = encoder_embeds.device
         
     | 
| 731 | 
         
            +
                    else:
         
     | 
| 732 | 
         
            +
                        raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds")
         
     | 
| 733 | 
         
            +
             
     | 
| 734 | 
         
            +
                    # past_key_values_length
         
     | 
| 735 | 
         
            +
                    past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
         
     | 
| 736 | 
         
            +
             
     | 
| 737 | 
         
            +
                    if attention_mask is None:
         
     | 
| 738 | 
         
            +
                        attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
         
     | 
| 739 | 
         
            +
                        
         
     | 
| 740 | 
         
            +
                    # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
         
     | 
| 741 | 
         
            +
                    # ourselves in which case we just need to make it broadcastable to all heads.
         
     | 
| 742 | 
         
            +
                    extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, 
         
     | 
| 743 | 
         
            +
                                                                                             device, is_decoder)
         
     | 
| 744 | 
         
            +
             
     | 
| 745 | 
         
            +
                    # If a 2D or 3D attention mask is provided for the cross-attention
         
     | 
| 746 | 
         
            +
                    # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
         
     | 
| 747 | 
         
            +
                    if encoder_hidden_states is not None:
         
     | 
| 748 | 
         
            +
                        if type(encoder_hidden_states) == list:
         
     | 
| 749 | 
         
            +
                            encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
         
     | 
| 750 | 
         
            +
                        else:
         
     | 
| 751 | 
         
            +
                            encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
         
     | 
| 752 | 
         
            +
                        encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
         
     | 
| 753 | 
         
            +
                        
         
     | 
| 754 | 
         
            +
                        if type(encoder_attention_mask) == list:
         
     | 
| 755 | 
         
            +
                            encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
         
     | 
| 756 | 
         
            +
                        elif encoder_attention_mask is None:
         
     | 
| 757 | 
         
            +
                            encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
         
     | 
| 758 | 
         
            +
                            encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
         
     | 
| 759 | 
         
            +
                        else:    
         
     | 
| 760 | 
         
            +
                            encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
         
     | 
| 761 | 
         
            +
                    else:
         
     | 
| 762 | 
         
            +
                        encoder_extended_attention_mask = None
         
     | 
| 763 | 
         
            +
             
     | 
| 764 | 
         
            +
                    # Prepare head mask if needed
         
     | 
| 765 | 
         
            +
                    # 1.0 in head_mask indicate we keep the head
         
     | 
| 766 | 
         
            +
                    # attention_probs has shape bsz x n_heads x N x N
         
     | 
| 767 | 
         
            +
                    # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
         
     | 
| 768 | 
         
            +
                    # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
         
     | 
| 769 | 
         
            +
                    head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
         
     | 
| 770 | 
         
            +
                    
         
     | 
| 771 | 
         
            +
                    if encoder_embeds is None:
         
     | 
| 772 | 
         
            +
                        embedding_output = self.embeddings(
         
     | 
| 773 | 
         
            +
                            input_ids=input_ids,
         
     | 
| 774 | 
         
            +
                            position_ids=position_ids,
         
     | 
| 775 | 
         
            +
                            inputs_embeds=inputs_embeds,
         
     | 
| 776 | 
         
            +
                            past_key_values_length=past_key_values_length,
         
     | 
| 777 | 
         
            +
                        )
         
     | 
| 778 | 
         
            +
                    else:
         
     | 
| 779 | 
         
            +
                        embedding_output = encoder_embeds
         
     | 
| 780 | 
         
            +
                        
         
     | 
| 781 | 
         
            +
                    encoder_outputs = self.encoder(
         
     | 
| 782 | 
         
            +
                        embedding_output,
         
     | 
| 783 | 
         
            +
                        attention_mask=extended_attention_mask,
         
     | 
| 784 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 785 | 
         
            +
                        encoder_hidden_states=encoder_hidden_states,
         
     | 
| 786 | 
         
            +
                        encoder_attention_mask=encoder_extended_attention_mask,
         
     | 
| 787 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 788 | 
         
            +
                        use_cache=use_cache,
         
     | 
| 789 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 790 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 791 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 792 | 
         
            +
                        mode=mode,
         
     | 
| 793 | 
         
            +
                    )
         
     | 
| 794 | 
         
            +
                    sequence_output = encoder_outputs[0]
         
     | 
| 795 | 
         
            +
                    pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
         
     | 
| 796 | 
         
            +
             
     | 
| 797 | 
         
            +
                    if not return_dict:
         
     | 
| 798 | 
         
            +
                        return (sequence_output, pooled_output) + encoder_outputs[1:]
         
     | 
| 799 | 
         
            +
             
     | 
| 800 | 
         
            +
                    return BaseModelOutputWithPoolingAndCrossAttentions(
         
     | 
| 801 | 
         
            +
                        last_hidden_state=sequence_output,
         
     | 
| 802 | 
         
            +
                        pooler_output=pooled_output,
         
     | 
| 803 | 
         
            +
                        past_key_values=encoder_outputs.past_key_values,
         
     | 
| 804 | 
         
            +
                        hidden_states=encoder_outputs.hidden_states,
         
     | 
| 805 | 
         
            +
                        attentions=encoder_outputs.attentions,
         
     | 
| 806 | 
         
            +
                        cross_attentions=encoder_outputs.cross_attentions,
         
     | 
| 807 | 
         
            +
                    )
         
     | 
| 808 | 
         
            +
             
     | 
| 809 | 
         
            +
             
     | 
| 810 | 
         
            +
             
     | 
| 811 | 
         
            +
            class BertLMHeadModel(BertPreTrainedModel):
         
     | 
| 812 | 
         
            +
             
     | 
| 813 | 
         
            +
                _keys_to_ignore_on_load_unexpected = [r"pooler"]
         
     | 
| 814 | 
         
            +
                _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
         
     | 
| 815 | 
         
            +
             
     | 
| 816 | 
         
            +
                def __init__(self, config):
         
     | 
| 817 | 
         
            +
                    super().__init__(config)
         
     | 
| 818 | 
         
            +
             
     | 
| 819 | 
         
            +
                    self.bert = BertModel(config, add_pooling_layer=False)
         
     | 
| 820 | 
         
            +
                    self.cls = BertOnlyMLMHead(config)
         
     | 
| 821 | 
         
            +
             
     | 
| 822 | 
         
            +
                    self.init_weights()
         
     | 
| 823 | 
         
            +
             
     | 
| 824 | 
         
            +
                def get_output_embeddings(self):
         
     | 
| 825 | 
         
            +
                    return self.cls.predictions.decoder
         
     | 
| 826 | 
         
            +
             
     | 
| 827 | 
         
            +
                def set_output_embeddings(self, new_embeddings):
         
     | 
| 828 | 
         
            +
                    self.cls.predictions.decoder = new_embeddings
         
     | 
| 829 | 
         
            +
             
     | 
| 830 | 
         
            +
                def forward(
         
     | 
| 831 | 
         
            +
                    self,
         
     | 
| 832 | 
         
            +
                    input_ids=None,
         
     | 
| 833 | 
         
            +
                    attention_mask=None,
         
     | 
| 834 | 
         
            +
                    position_ids=None,
         
     | 
| 835 | 
         
            +
                    head_mask=None,
         
     | 
| 836 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 837 | 
         
            +
                    encoder_hidden_states=None,
         
     | 
| 838 | 
         
            +
                    encoder_attention_mask=None,
         
     | 
| 839 | 
         
            +
                    labels=None,
         
     | 
| 840 | 
         
            +
                    past_key_values=None,
         
     | 
| 841 | 
         
            +
                    use_cache=None,
         
     | 
| 842 | 
         
            +
                    output_attentions=None,
         
     | 
| 843 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 844 | 
         
            +
                    return_dict=None,
         
     | 
| 845 | 
         
            +
                    return_logits=False,            
         
     | 
| 846 | 
         
            +
                    is_decoder=True,
         
     | 
| 847 | 
         
            +
                    reduction='mean',
         
     | 
| 848 | 
         
            +
                    mode='multimodal', 
         
     | 
| 849 | 
         
            +
                ):
         
     | 
| 850 | 
         
            +
                    r"""
         
     | 
| 851 | 
         
            +
                    encoder_hidden_states  (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
         
     | 
| 852 | 
         
            +
                        Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
         
     | 
| 853 | 
         
            +
                        the model is configured as a decoder.
         
     | 
| 854 | 
         
            +
                    encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
         
     | 
| 855 | 
         
            +
                        Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
         
     | 
| 856 | 
         
            +
                        the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
         
     | 
| 857 | 
         
            +
                        - 1 for tokens that are **not masked**,
         
     | 
| 858 | 
         
            +
                        - 0 for tokens that are **masked**.
         
     | 
| 859 | 
         
            +
                    labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
         
     | 
| 860 | 
         
            +
                        Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
         
     | 
| 861 | 
         
            +
                        ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring) Tokens with indices set to ``-100`` are
         
     | 
| 862 | 
         
            +
                        ignored (masked), the loss is only computed for the tokens with labels n ``[0, ..., config.vocab_size]``
         
     | 
| 863 | 
         
            +
                    past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
         
     | 
| 864 | 
         
            +
                        Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
         
     | 
| 865 | 
         
            +
                        If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
         
     | 
| 866 | 
         
            +
                        (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
         
     | 
| 867 | 
         
            +
                        instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
         
     | 
| 868 | 
         
            +
                    use_cache (:obj:`bool`, `optional`):
         
     | 
| 869 | 
         
            +
                        If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
         
     | 
| 870 | 
         
            +
                        decoding (see :obj:`past_key_values`).
         
     | 
| 871 | 
         
            +
                    Returns:
         
     | 
| 872 | 
         
            +
                    Example::
         
     | 
| 873 | 
         
            +
                        >>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
         
     | 
| 874 | 
         
            +
                        >>> import torch
         
     | 
| 875 | 
         
            +
                        >>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
         
     | 
| 876 | 
         
            +
                        >>> config = BertConfig.from_pretrained("bert-base-cased")
         
     | 
| 877 | 
         
            +
                        >>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
         
     | 
| 878 | 
         
            +
                        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
         
     | 
| 879 | 
         
            +
                        >>> outputs = model(**inputs)
         
     | 
| 880 | 
         
            +
                        >>> prediction_logits = outputs.logits
         
     | 
| 881 | 
         
            +
                    """
         
     | 
| 882 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 883 | 
         
            +
                    if labels is not None:
         
     | 
| 884 | 
         
            +
                        use_cache = False
         
     | 
| 885 | 
         
            +
             
     | 
| 886 | 
         
            +
                    outputs = self.bert(
         
     | 
| 887 | 
         
            +
                        input_ids,
         
     | 
| 888 | 
         
            +
                        attention_mask=attention_mask,
         
     | 
| 889 | 
         
            +
                        position_ids=position_ids,
         
     | 
| 890 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 891 | 
         
            +
                        inputs_embeds=inputs_embeds,
         
     | 
| 892 | 
         
            +
                        encoder_hidden_states=encoder_hidden_states,
         
     | 
| 893 | 
         
            +
                        encoder_attention_mask=encoder_attention_mask,
         
     | 
| 894 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 895 | 
         
            +
                        use_cache=use_cache,
         
     | 
| 896 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 897 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 898 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 899 | 
         
            +
                        is_decoder=is_decoder,
         
     | 
| 900 | 
         
            +
                        mode=mode,
         
     | 
| 901 | 
         
            +
                    )
         
     | 
| 902 | 
         
            +
                    
         
     | 
| 903 | 
         
            +
                    sequence_output = outputs[0]
         
     | 
| 904 | 
         
            +
                    prediction_scores = self.cls(sequence_output)
         
     | 
| 905 | 
         
            +
                    
         
     | 
| 906 | 
         
            +
                    if return_logits:
         
     | 
| 907 | 
         
            +
                        return prediction_scores[:, :-1, :].contiguous()  
         
     | 
| 908 | 
         
            +
             
     | 
| 909 | 
         
            +
                    lm_loss = None
         
     | 
| 910 | 
         
            +
                    if labels is not None:
         
     | 
| 911 | 
         
            +
                        # we are doing next-token prediction; shift prediction scores and input ids by one
         
     | 
| 912 | 
         
            +
                        shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
         
     | 
| 913 | 
         
            +
                        labels = labels[:, 1:].contiguous()
         
     | 
| 914 | 
         
            +
                        loss_fct = CrossEntropyLoss(reduction=reduction, label_smoothing=0.1) 
         
     | 
| 915 | 
         
            +
                        lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
         
     | 
| 916 | 
         
            +
                        if reduction=='none':
         
     | 
| 917 | 
         
            +
                            lm_loss = lm_loss.view(prediction_scores.size(0),-1).sum(1)               
         
     | 
| 918 | 
         
            +
             
     | 
| 919 | 
         
            +
                    if not return_dict:
         
     | 
| 920 | 
         
            +
                        output = (prediction_scores,) + outputs[2:]
         
     | 
| 921 | 
         
            +
                        return ((lm_loss,) + output) if lm_loss is not None else output
         
     | 
| 922 | 
         
            +
             
     | 
| 923 | 
         
            +
                    return CausalLMOutputWithCrossAttentions(
         
     | 
| 924 | 
         
            +
                        loss=lm_loss,
         
     | 
| 925 | 
         
            +
                        logits=prediction_scores,
         
     | 
| 926 | 
         
            +
                        past_key_values=outputs.past_key_values,
         
     | 
| 927 | 
         
            +
                        hidden_states=outputs.hidden_states,
         
     | 
| 928 | 
         
            +
                        attentions=outputs.attentions,
         
     | 
| 929 | 
         
            +
                        cross_attentions=outputs.cross_attentions,
         
     | 
| 930 | 
         
            +
                    )
         
     | 
| 931 | 
         
            +
             
     | 
| 932 | 
         
            +
                def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs):
         
     | 
| 933 | 
         
            +
                    input_shape = input_ids.shape
         
     | 
| 934 | 
         
            +
                    # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
         
     | 
| 935 | 
         
            +
                    if attention_mask is None:
         
     | 
| 936 | 
         
            +
                        attention_mask = input_ids.new_ones(input_shape)
         
     | 
| 937 | 
         
            +
             
     | 
| 938 | 
         
            +
                    # cut decoder_input_ids if past is used
         
     | 
| 939 | 
         
            +
                    if past is not None:
         
     | 
| 940 | 
         
            +
                        input_ids = input_ids[:, -1:]
         
     | 
| 941 | 
         
            +
             
     | 
| 942 | 
         
            +
                    return {
         
     | 
| 943 | 
         
            +
                        "input_ids": input_ids, 
         
     | 
| 944 | 
         
            +
                        "attention_mask": attention_mask, 
         
     | 
| 945 | 
         
            +
                        "past_key_values": past,
         
     | 
| 946 | 
         
            +
                        "encoder_hidden_states": model_kwargs.get("encoder_hidden_states", None),
         
     | 
| 947 | 
         
            +
                        "encoder_attention_mask": model_kwargs.get("encoder_attention_mask", None),
         
     | 
| 948 | 
         
            +
                        "is_decoder": True,
         
     | 
| 949 | 
         
            +
                    }
         
     | 
| 950 | 
         
            +
             
     | 
| 951 | 
         
            +
                def _reorder_cache(self, past, beam_idx):
         
     | 
| 952 | 
         
            +
                    reordered_past = ()
         
     | 
| 953 | 
         
            +
                    for layer_past in past:
         
     | 
| 954 | 
         
            +
                        reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
         
     | 
| 955 | 
         
            +
                    return reordered_past
         
     | 
    	
        extras/BLIP/models/nlvr_encoder.py
    ADDED
    
    | 
         @@ -0,0 +1,843 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import math
         
     | 
| 2 | 
         
            +
            import os
         
     | 
| 3 | 
         
            +
            import warnings
         
     | 
| 4 | 
         
            +
            from dataclasses import dataclass
         
     | 
| 5 | 
         
            +
            from typing import Optional, Tuple
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            import torch
         
     | 
| 8 | 
         
            +
            from torch import Tensor, device, dtype, nn
         
     | 
| 9 | 
         
            +
            import torch.utils.checkpoint
         
     | 
| 10 | 
         
            +
            from torch import nn
         
     | 
| 11 | 
         
            +
            from torch.nn import CrossEntropyLoss
         
     | 
| 12 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            from transformers.activations import ACT2FN
         
     | 
| 15 | 
         
            +
            from transformers.file_utils import (
         
     | 
| 16 | 
         
            +
                ModelOutput,
         
     | 
| 17 | 
         
            +
            )
         
     | 
| 18 | 
         
            +
            from transformers.modeling_outputs import (
         
     | 
| 19 | 
         
            +
                BaseModelOutputWithPastAndCrossAttentions,
         
     | 
| 20 | 
         
            +
                BaseModelOutputWithPoolingAndCrossAttentions,
         
     | 
| 21 | 
         
            +
                CausalLMOutputWithCrossAttentions,
         
     | 
| 22 | 
         
            +
                MaskedLMOutput,
         
     | 
| 23 | 
         
            +
                MultipleChoiceModelOutput,
         
     | 
| 24 | 
         
            +
                NextSentencePredictorOutput,
         
     | 
| 25 | 
         
            +
                QuestionAnsweringModelOutput,
         
     | 
| 26 | 
         
            +
                SequenceClassifierOutput,
         
     | 
| 27 | 
         
            +
                TokenClassifierOutput,
         
     | 
| 28 | 
         
            +
            )
         
     | 
| 29 | 
         
            +
            from transformers.modeling_utils import (
         
     | 
| 30 | 
         
            +
                PreTrainedModel,
         
     | 
| 31 | 
         
            +
                apply_chunking_to_forward,
         
     | 
| 32 | 
         
            +
                find_pruneable_heads_and_indices,
         
     | 
| 33 | 
         
            +
                prune_linear_layer,
         
     | 
| 34 | 
         
            +
            )
         
     | 
| 35 | 
         
            +
            from transformers.utils import logging
         
     | 
| 36 | 
         
            +
            from transformers.models.bert.configuration_bert import BertConfig
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
            logger = logging.get_logger(__name__)
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
            class BertEmbeddings(nn.Module):
         
     | 
| 43 | 
         
            +
                """Construct the embeddings from word and position embeddings."""
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
                def __init__(self, config):
         
     | 
| 46 | 
         
            +
                    super().__init__()
         
     | 
| 47 | 
         
            +
                    self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
         
     | 
| 48 | 
         
            +
                    self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
                    # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
         
     | 
| 51 | 
         
            +
                    # any TensorFlow checkpoint file
         
     | 
| 52 | 
         
            +
                    self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
         
     | 
| 53 | 
         
            +
                    self.dropout = nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
                    # position_ids (1, len position emb) is contiguous in memory and exported when serialized
         
     | 
| 56 | 
         
            +
                    self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
         
     | 
| 57 | 
         
            +
                    self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
         
     | 
| 58 | 
         
            +
                    
         
     | 
| 59 | 
         
            +
                    self.config = config
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
                def forward(
         
     | 
| 62 | 
         
            +
                    self, input_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
         
     | 
| 63 | 
         
            +
                ):
         
     | 
| 64 | 
         
            +
                    if input_ids is not None:
         
     | 
| 65 | 
         
            +
                        input_shape = input_ids.size()
         
     | 
| 66 | 
         
            +
                    else:
         
     | 
| 67 | 
         
            +
                        input_shape = inputs_embeds.size()[:-1]
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
                    seq_length = input_shape[1]
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
                    if position_ids is None:
         
     | 
| 72 | 
         
            +
                        position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
                    if inputs_embeds is None:
         
     | 
| 75 | 
         
            +
                        inputs_embeds = self.word_embeddings(input_ids)
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
                    embeddings = inputs_embeds
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
                    if self.position_embedding_type == "absolute":
         
     | 
| 80 | 
         
            +
                        position_embeddings = self.position_embeddings(position_ids)
         
     | 
| 81 | 
         
            +
                        embeddings += position_embeddings
         
     | 
| 82 | 
         
            +
                    embeddings = self.LayerNorm(embeddings)
         
     | 
| 83 | 
         
            +
                    embeddings = self.dropout(embeddings)
         
     | 
| 84 | 
         
            +
                    return embeddings
         
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
            class BertSelfAttention(nn.Module):
         
     | 
| 88 | 
         
            +
                def __init__(self, config, is_cross_attention):
         
     | 
| 89 | 
         
            +
                    super().__init__()
         
     | 
| 90 | 
         
            +
                    self.config = config
         
     | 
| 91 | 
         
            +
                    if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
         
     | 
| 92 | 
         
            +
                        raise ValueError(
         
     | 
| 93 | 
         
            +
                            "The hidden size (%d) is not a multiple of the number of attention "
         
     | 
| 94 | 
         
            +
                            "heads (%d)" % (config.hidden_size, config.num_attention_heads)
         
     | 
| 95 | 
         
            +
                        )
         
     | 
| 96 | 
         
            +
                    
         
     | 
| 97 | 
         
            +
                    self.num_attention_heads = config.num_attention_heads
         
     | 
| 98 | 
         
            +
                    self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
         
     | 
| 99 | 
         
            +
                    self.all_head_size = self.num_attention_heads * self.attention_head_size
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
                    self.query = nn.Linear(config.hidden_size, self.all_head_size)
         
     | 
| 102 | 
         
            +
                    if is_cross_attention:
         
     | 
| 103 | 
         
            +
                        self.key = nn.Linear(config.encoder_width, self.all_head_size)
         
     | 
| 104 | 
         
            +
                        self.value = nn.Linear(config.encoder_width, self.all_head_size)
         
     | 
| 105 | 
         
            +
                    else:
         
     | 
| 106 | 
         
            +
                        self.key = nn.Linear(config.hidden_size, self.all_head_size)
         
     | 
| 107 | 
         
            +
                        self.value = nn.Linear(config.hidden_size, self.all_head_size)
         
     | 
| 108 | 
         
            +
             
     | 
| 109 | 
         
            +
                    self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
         
     | 
| 110 | 
         
            +
                    self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
         
     | 
| 111 | 
         
            +
                    if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
         
     | 
| 112 | 
         
            +
                        self.max_position_embeddings = config.max_position_embeddings
         
     | 
| 113 | 
         
            +
                        self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
         
     | 
| 114 | 
         
            +
                    self.save_attention = False   
         
     | 
| 115 | 
         
            +
                        
         
     | 
| 116 | 
         
            +
                def save_attn_gradients(self, attn_gradients):
         
     | 
| 117 | 
         
            +
                    self.attn_gradients = attn_gradients
         
     | 
| 118 | 
         
            +
                    
         
     | 
| 119 | 
         
            +
                def get_attn_gradients(self):
         
     | 
| 120 | 
         
            +
                    return self.attn_gradients
         
     | 
| 121 | 
         
            +
                
         
     | 
| 122 | 
         
            +
                def save_attention_map(self, attention_map):
         
     | 
| 123 | 
         
            +
                    self.attention_map = attention_map
         
     | 
| 124 | 
         
            +
                    
         
     | 
| 125 | 
         
            +
                def get_attention_map(self):
         
     | 
| 126 | 
         
            +
                    return self.attention_map
         
     | 
| 127 | 
         
            +
                
         
     | 
| 128 | 
         
            +
                def transpose_for_scores(self, x):
         
     | 
| 129 | 
         
            +
                    new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
         
     | 
| 130 | 
         
            +
                    x = x.view(*new_x_shape)
         
     | 
| 131 | 
         
            +
                    return x.permute(0, 2, 1, 3)
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
                def forward(
         
     | 
| 134 | 
         
            +
                    self,
         
     | 
| 135 | 
         
            +
                    hidden_states,
         
     | 
| 136 | 
         
            +
                    attention_mask=None,
         
     | 
| 137 | 
         
            +
                    head_mask=None,
         
     | 
| 138 | 
         
            +
                    encoder_hidden_states=None,
         
     | 
| 139 | 
         
            +
                    encoder_attention_mask=None,
         
     | 
| 140 | 
         
            +
                    past_key_value=None,
         
     | 
| 141 | 
         
            +
                    output_attentions=False,
         
     | 
| 142 | 
         
            +
                ):
         
     | 
| 143 | 
         
            +
                    mixed_query_layer = self.query(hidden_states)
         
     | 
| 144 | 
         
            +
             
     | 
| 145 | 
         
            +
                    # If this is instantiated as a cross-attention module, the keys
         
     | 
| 146 | 
         
            +
                    # and values come from an encoder; the attention mask needs to be
         
     | 
| 147 | 
         
            +
                    # such that the encoder's padding tokens are not attended to.
         
     | 
| 148 | 
         
            +
                    is_cross_attention = encoder_hidden_states is not None
         
     | 
| 149 | 
         
            +
             
     | 
| 150 | 
         
            +
                    if is_cross_attention:
         
     | 
| 151 | 
         
            +
                        key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
         
     | 
| 152 | 
         
            +
                        value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
         
     | 
| 153 | 
         
            +
                        attention_mask = encoder_attention_mask
         
     | 
| 154 | 
         
            +
                    elif past_key_value is not None:
         
     | 
| 155 | 
         
            +
                        key_layer = self.transpose_for_scores(self.key(hidden_states))
         
     | 
| 156 | 
         
            +
                        value_layer = self.transpose_for_scores(self.value(hidden_states))
         
     | 
| 157 | 
         
            +
                        key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
         
     | 
| 158 | 
         
            +
                        value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
         
     | 
| 159 | 
         
            +
                    else:
         
     | 
| 160 | 
         
            +
                        key_layer = self.transpose_for_scores(self.key(hidden_states))
         
     | 
| 161 | 
         
            +
                        value_layer = self.transpose_for_scores(self.value(hidden_states))
         
     | 
| 162 | 
         
            +
             
     | 
| 163 | 
         
            +
                    query_layer = self.transpose_for_scores(mixed_query_layer)
         
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
                    past_key_value = (key_layer, value_layer)
         
     | 
| 166 | 
         
            +
             
     | 
| 167 | 
         
            +
                    # Take the dot product between "query" and "key" to get the raw attention scores.
         
     | 
| 168 | 
         
            +
                    attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
         
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
                    if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
         
     | 
| 171 | 
         
            +
                        seq_length = hidden_states.size()[1]
         
     | 
| 172 | 
         
            +
                        position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
         
     | 
| 173 | 
         
            +
                        position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
         
     | 
| 174 | 
         
            +
                        distance = position_ids_l - position_ids_r
         
     | 
| 175 | 
         
            +
                        positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
         
     | 
| 176 | 
         
            +
                        positional_embedding = positional_embedding.to(dtype=query_layer.dtype)  # fp16 compatibility
         
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
                        if self.position_embedding_type == "relative_key":
         
     | 
| 179 | 
         
            +
                            relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
         
     | 
| 180 | 
         
            +
                            attention_scores = attention_scores + relative_position_scores
         
     | 
| 181 | 
         
            +
                        elif self.position_embedding_type == "relative_key_query":
         
     | 
| 182 | 
         
            +
                            relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
         
     | 
| 183 | 
         
            +
                            relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
         
     | 
| 184 | 
         
            +
                            attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
         
     | 
| 185 | 
         
            +
             
     | 
| 186 | 
         
            +
                    attention_scores = attention_scores / math.sqrt(self.attention_head_size)
         
     | 
| 187 | 
         
            +
                    if attention_mask is not None:
         
     | 
| 188 | 
         
            +
                        # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
         
     | 
| 189 | 
         
            +
                        attention_scores = attention_scores + attention_mask
         
     | 
| 190 | 
         
            +
             
     | 
| 191 | 
         
            +
                    # Normalize the attention scores to probabilities.
         
     | 
| 192 | 
         
            +
                    attention_probs = nn.Softmax(dim=-1)(attention_scores)
         
     | 
| 193 | 
         
            +
                    
         
     | 
| 194 | 
         
            +
                    if is_cross_attention and self.save_attention:
         
     | 
| 195 | 
         
            +
                        self.save_attention_map(attention_probs)
         
     | 
| 196 | 
         
            +
                        attention_probs.register_hook(self.save_attn_gradients)         
         
     | 
| 197 | 
         
            +
             
     | 
| 198 | 
         
            +
                    # This is actually dropping out entire tokens to attend to, which might
         
     | 
| 199 | 
         
            +
                    # seem a bit unusual, but is taken from the original Transformer paper.
         
     | 
| 200 | 
         
            +
                    attention_probs_dropped = self.dropout(attention_probs)
         
     | 
| 201 | 
         
            +
             
     | 
| 202 | 
         
            +
                    # Mask heads if we want to
         
     | 
| 203 | 
         
            +
                    if head_mask is not None:
         
     | 
| 204 | 
         
            +
                        attention_probs_dropped = attention_probs_dropped * head_mask
         
     | 
| 205 | 
         
            +
             
     | 
| 206 | 
         
            +
                    context_layer = torch.matmul(attention_probs_dropped, value_layer)
         
     | 
| 207 | 
         
            +
             
     | 
| 208 | 
         
            +
                    context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
         
     | 
| 209 | 
         
            +
                    new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
         
     | 
| 210 | 
         
            +
                    context_layer = context_layer.view(*new_context_layer_shape)
         
     | 
| 211 | 
         
            +
             
     | 
| 212 | 
         
            +
                    outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
         
     | 
| 213 | 
         
            +
             
     | 
| 214 | 
         
            +
                    outputs = outputs + (past_key_value,)
         
     | 
| 215 | 
         
            +
                    return outputs
         
     | 
| 216 | 
         
            +
             
     | 
| 217 | 
         
            +
             
     | 
| 218 | 
         
            +
            class BertSelfOutput(nn.Module):
         
     | 
| 219 | 
         
            +
                def __init__(self, config, twin=False, merge=False):     
         
     | 
| 220 | 
         
            +
                    super().__init__()
         
     | 
| 221 | 
         
            +
                    self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
         
     | 
| 222 | 
         
            +
                    self.dropout = nn.Dropout(config.hidden_dropout_prob)        
         
     | 
| 223 | 
         
            +
                    if twin:
         
     | 
| 224 | 
         
            +
                        self.dense0 = nn.Linear(config.hidden_size, config.hidden_size)
         
     | 
| 225 | 
         
            +
                        self.dense1 = nn.Linear(config.hidden_size, config.hidden_size)         
         
     | 
| 226 | 
         
            +
                    else:
         
     | 
| 227 | 
         
            +
                        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
         
     | 
| 228 | 
         
            +
                    if merge:
         
     | 
| 229 | 
         
            +
                        self.act =  ACT2FN[config.hidden_act]
         
     | 
| 230 | 
         
            +
                        self.merge_layer = nn.Linear(config.hidden_size * 2, config.hidden_size)
         
     | 
| 231 | 
         
            +
                        self.merge = True
         
     | 
| 232 | 
         
            +
                    else:
         
     | 
| 233 | 
         
            +
                        self.merge = False
         
     | 
| 234 | 
         
            +
             
     | 
| 235 | 
         
            +
                def forward(self, hidden_states, input_tensor):
         
     | 
| 236 | 
         
            +
                    if type(hidden_states) == list:
         
     | 
| 237 | 
         
            +
                        hidden_states0 = self.dense0(hidden_states[0])
         
     | 
| 238 | 
         
            +
                        hidden_states1 = self.dense1(hidden_states[1])        
         
     | 
| 239 | 
         
            +
                        if self.merge:  
         
     | 
| 240 | 
         
            +
                            #hidden_states = self.merge_layer(self.act(torch.cat([hidden_states0,hidden_states1],dim=-1)))
         
     | 
| 241 | 
         
            +
                            hidden_states = self.merge_layer(torch.cat([hidden_states0,hidden_states1],dim=-1))
         
     | 
| 242 | 
         
            +
                        else:
         
     | 
| 243 | 
         
            +
                            hidden_states = (hidden_states0+hidden_states1)/2
         
     | 
| 244 | 
         
            +
                    else:    
         
     | 
| 245 | 
         
            +
                        hidden_states = self.dense(hidden_states)
         
     | 
| 246 | 
         
            +
                    hidden_states = self.dropout(hidden_states)
         
     | 
| 247 | 
         
            +
                    hidden_states = self.LayerNorm(hidden_states + input_tensor)
         
     | 
| 248 | 
         
            +
                    return hidden_states
         
     | 
| 249 | 
         
            +
             
     | 
| 250 | 
         
            +
             
     | 
| 251 | 
         
            +
            class BertAttention(nn.Module):
         
     | 
| 252 | 
         
            +
                def __init__(self, config, is_cross_attention=False, layer_num=-1):
         
     | 
| 253 | 
         
            +
                    super().__init__()
         
     | 
| 254 | 
         
            +
                    if is_cross_attention:
         
     | 
| 255 | 
         
            +
                        self.self0 = BertSelfAttention(config, is_cross_attention)
         
     | 
| 256 | 
         
            +
                        self.self1 = BertSelfAttention(config, is_cross_attention)
         
     | 
| 257 | 
         
            +
                    else:    
         
     | 
| 258 | 
         
            +
                        self.self = BertSelfAttention(config, is_cross_attention)
         
     | 
| 259 | 
         
            +
                    self.output = BertSelfOutput(config, twin=is_cross_attention, merge=(is_cross_attention and layer_num>=6))
         
     | 
| 260 | 
         
            +
                    self.pruned_heads = set()
         
     | 
| 261 | 
         
            +
             
     | 
| 262 | 
         
            +
                def prune_heads(self, heads):
         
     | 
| 263 | 
         
            +
                    if len(heads) == 0:
         
     | 
| 264 | 
         
            +
                        return
         
     | 
| 265 | 
         
            +
                    heads, index = find_pruneable_heads_and_indices(
         
     | 
| 266 | 
         
            +
                        heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
         
     | 
| 267 | 
         
            +
                    )
         
     | 
| 268 | 
         
            +
             
     | 
| 269 | 
         
            +
                    # Prune linear layers
         
     | 
| 270 | 
         
            +
                    self.self.query = prune_linear_layer(self.self.query, index)
         
     | 
| 271 | 
         
            +
                    self.self.key = prune_linear_layer(self.self.key, index)
         
     | 
| 272 | 
         
            +
                    self.self.value = prune_linear_layer(self.self.value, index)
         
     | 
| 273 | 
         
            +
                    self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
         
     | 
| 274 | 
         
            +
             
     | 
| 275 | 
         
            +
                    # Update hyper params and store pruned heads
         
     | 
| 276 | 
         
            +
                    self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
         
     | 
| 277 | 
         
            +
                    self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
         
     | 
| 278 | 
         
            +
                    self.pruned_heads = self.pruned_heads.union(heads)
         
     | 
| 279 | 
         
            +
             
     | 
| 280 | 
         
            +
                def forward(
         
     | 
| 281 | 
         
            +
                    self,
         
     | 
| 282 | 
         
            +
                    hidden_states,
         
     | 
| 283 | 
         
            +
                    attention_mask=None,
         
     | 
| 284 | 
         
            +
                    head_mask=None,
         
     | 
| 285 | 
         
            +
                    encoder_hidden_states=None,
         
     | 
| 286 | 
         
            +
                    encoder_attention_mask=None,
         
     | 
| 287 | 
         
            +
                    past_key_value=None,
         
     | 
| 288 | 
         
            +
                    output_attentions=False,
         
     | 
| 289 | 
         
            +
                ):        
         
     | 
| 290 | 
         
            +
                    if type(encoder_hidden_states)==list:   
         
     | 
| 291 | 
         
            +
                        self_outputs0 = self.self0(
         
     | 
| 292 | 
         
            +
                            hidden_states,
         
     | 
| 293 | 
         
            +
                            attention_mask,
         
     | 
| 294 | 
         
            +
                            head_mask,
         
     | 
| 295 | 
         
            +
                            encoder_hidden_states[0],
         
     | 
| 296 | 
         
            +
                            encoder_attention_mask[0],
         
     | 
| 297 | 
         
            +
                            past_key_value,
         
     | 
| 298 | 
         
            +
                            output_attentions,
         
     | 
| 299 | 
         
            +
                        )
         
     | 
| 300 | 
         
            +
                        self_outputs1 = self.self1(
         
     | 
| 301 | 
         
            +
                            hidden_states,
         
     | 
| 302 | 
         
            +
                            attention_mask,
         
     | 
| 303 | 
         
            +
                            head_mask,
         
     | 
| 304 | 
         
            +
                            encoder_hidden_states[1],
         
     | 
| 305 | 
         
            +
                            encoder_attention_mask[1],
         
     | 
| 306 | 
         
            +
                            past_key_value,
         
     | 
| 307 | 
         
            +
                            output_attentions,
         
     | 
| 308 | 
         
            +
                        )                        
         
     | 
| 309 | 
         
            +
                        attention_output = self.output([self_outputs0[0],self_outputs1[0]], hidden_states)
         
     | 
| 310 | 
         
            +
                
         
     | 
| 311 | 
         
            +
                        outputs = (attention_output,) + self_outputs0[1:]  # add attentions if we output them
         
     | 
| 312 | 
         
            +
                    else:        
         
     | 
| 313 | 
         
            +
                        self_outputs = self.self(
         
     | 
| 314 | 
         
            +
                            hidden_states,
         
     | 
| 315 | 
         
            +
                            attention_mask,
         
     | 
| 316 | 
         
            +
                            head_mask,
         
     | 
| 317 | 
         
            +
                            encoder_hidden_states,
         
     | 
| 318 | 
         
            +
                            encoder_attention_mask,
         
     | 
| 319 | 
         
            +
                            past_key_value,
         
     | 
| 320 | 
         
            +
                            output_attentions,
         
     | 
| 321 | 
         
            +
                        )
         
     | 
| 322 | 
         
            +
                        attention_output = self.output(self_outputs[0], hidden_states)
         
     | 
| 323 | 
         
            +
                        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
         
     | 
| 324 | 
         
            +
                    return outputs
         
     | 
| 325 | 
         
            +
             
     | 
| 326 | 
         
            +
             
     | 
| 327 | 
         
            +
            class BertIntermediate(nn.Module):
         
     | 
| 328 | 
         
            +
                def __init__(self, config):
         
     | 
| 329 | 
         
            +
                    super().__init__()
         
     | 
| 330 | 
         
            +
                    self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
         
     | 
| 331 | 
         
            +
                    if isinstance(config.hidden_act, str):
         
     | 
| 332 | 
         
            +
                        self.intermediate_act_fn = ACT2FN[config.hidden_act]
         
     | 
| 333 | 
         
            +
                    else:
         
     | 
| 334 | 
         
            +
                        self.intermediate_act_fn = config.hidden_act
         
     | 
| 335 | 
         
            +
             
     | 
| 336 | 
         
            +
                def forward(self, hidden_states):
         
     | 
| 337 | 
         
            +
                    hidden_states = self.dense(hidden_states)
         
     | 
| 338 | 
         
            +
                    hidden_states = self.intermediate_act_fn(hidden_states)
         
     | 
| 339 | 
         
            +
                    return hidden_states
         
     | 
| 340 | 
         
            +
             
     | 
| 341 | 
         
            +
             
     | 
| 342 | 
         
            +
            class BertOutput(nn.Module):
         
     | 
| 343 | 
         
            +
                def __init__(self, config):
         
     | 
| 344 | 
         
            +
                    super().__init__()
         
     | 
| 345 | 
         
            +
                    self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
         
     | 
| 346 | 
         
            +
                    self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
         
     | 
| 347 | 
         
            +
                    self.dropout = nn.Dropout(config.hidden_dropout_prob)
         
     | 
| 348 | 
         
            +
             
     | 
| 349 | 
         
            +
                def forward(self, hidden_states, input_tensor):
         
     | 
| 350 | 
         
            +
                    hidden_states = self.dense(hidden_states)
         
     | 
| 351 | 
         
            +
                    hidden_states = self.dropout(hidden_states)
         
     | 
| 352 | 
         
            +
                    hidden_states = self.LayerNorm(hidden_states + input_tensor)
         
     | 
| 353 | 
         
            +
                    return hidden_states
         
     | 
| 354 | 
         
            +
             
     | 
| 355 | 
         
            +
             
     | 
| 356 | 
         
            +
            class BertLayer(nn.Module):
         
     | 
| 357 | 
         
            +
                def __init__(self, config, layer_num):
         
     | 
| 358 | 
         
            +
                    super().__init__()
         
     | 
| 359 | 
         
            +
                    self.config = config
         
     | 
| 360 | 
         
            +
                    self.chunk_size_feed_forward = config.chunk_size_feed_forward
         
     | 
| 361 | 
         
            +
                    self.seq_len_dim = 1
         
     | 
| 362 | 
         
            +
                    self.attention = BertAttention(config)      
         
     | 
| 363 | 
         
            +
                    self.layer_num = layer_num          
         
     | 
| 364 | 
         
            +
                    if self.config.add_cross_attention:
         
     | 
| 365 | 
         
            +
                        self.crossattention = BertAttention(config, is_cross_attention=self.config.add_cross_attention, layer_num=layer_num)
         
     | 
| 366 | 
         
            +
                    self.intermediate = BertIntermediate(config)
         
     | 
| 367 | 
         
            +
                    self.output = BertOutput(config)
         
     | 
| 368 | 
         
            +
             
     | 
| 369 | 
         
            +
                def forward(
         
     | 
| 370 | 
         
            +
                    self,
         
     | 
| 371 | 
         
            +
                    hidden_states,
         
     | 
| 372 | 
         
            +
                    attention_mask=None,
         
     | 
| 373 | 
         
            +
                    head_mask=None,
         
     | 
| 374 | 
         
            +
                    encoder_hidden_states=None,
         
     | 
| 375 | 
         
            +
                    encoder_attention_mask=None,
         
     | 
| 376 | 
         
            +
                    past_key_value=None,
         
     | 
| 377 | 
         
            +
                    output_attentions=False,
         
     | 
| 378 | 
         
            +
                    mode=None,
         
     | 
| 379 | 
         
            +
                ):
         
     | 
| 380 | 
         
            +
                    # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
         
     | 
| 381 | 
         
            +
                    self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
         
     | 
| 382 | 
         
            +
                    self_attention_outputs = self.attention(
         
     | 
| 383 | 
         
            +
                        hidden_states,
         
     | 
| 384 | 
         
            +
                        attention_mask,
         
     | 
| 385 | 
         
            +
                        head_mask,
         
     | 
| 386 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 387 | 
         
            +
                        past_key_value=self_attn_past_key_value,
         
     | 
| 388 | 
         
            +
                    )
         
     | 
| 389 | 
         
            +
                    attention_output = self_attention_outputs[0]
         
     | 
| 390 | 
         
            +
             
     | 
| 391 | 
         
            +
                    outputs = self_attention_outputs[1:-1]
         
     | 
| 392 | 
         
            +
                    present_key_value = self_attention_outputs[-1]
         
     | 
| 393 | 
         
            +
             
     | 
| 394 | 
         
            +
                    if mode=='multimodal':
         
     | 
| 395 | 
         
            +
                        assert encoder_hidden_states is not None, "encoder_hidden_states must be given for cross-attention layers"
         
     | 
| 396 | 
         
            +
                        cross_attention_outputs = self.crossattention(
         
     | 
| 397 | 
         
            +
                            attention_output,
         
     | 
| 398 | 
         
            +
                            attention_mask,
         
     | 
| 399 | 
         
            +
                            head_mask,
         
     | 
| 400 | 
         
            +
                            encoder_hidden_states,
         
     | 
| 401 | 
         
            +
                            encoder_attention_mask,
         
     | 
| 402 | 
         
            +
                            output_attentions=output_attentions,
         
     | 
| 403 | 
         
            +
                        )
         
     | 
| 404 | 
         
            +
                        attention_output = cross_attention_outputs[0]
         
     | 
| 405 | 
         
            +
                        outputs = outputs + cross_attention_outputs[1:-1]  # add cross attentions if we output attention weights                               
         
     | 
| 406 | 
         
            +
                    layer_output = apply_chunking_to_forward(
         
     | 
| 407 | 
         
            +
                        self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
         
     | 
| 408 | 
         
            +
                    )
         
     | 
| 409 | 
         
            +
                    outputs = (layer_output,) + outputs
         
     | 
| 410 | 
         
            +
             
     | 
| 411 | 
         
            +
                    outputs = outputs + (present_key_value,)
         
     | 
| 412 | 
         
            +
             
     | 
| 413 | 
         
            +
                    return outputs
         
     | 
| 414 | 
         
            +
             
     | 
| 415 | 
         
            +
                def feed_forward_chunk(self, attention_output):
         
     | 
| 416 | 
         
            +
                    intermediate_output = self.intermediate(attention_output)
         
     | 
| 417 | 
         
            +
                    layer_output = self.output(intermediate_output, attention_output)
         
     | 
| 418 | 
         
            +
                    return layer_output
         
     | 
| 419 | 
         
            +
             
     | 
| 420 | 
         
            +
             
     | 
| 421 | 
         
            +
            class BertEncoder(nn.Module):
         
     | 
| 422 | 
         
            +
                def __init__(self, config):
         
     | 
| 423 | 
         
            +
                    super().__init__()
         
     | 
| 424 | 
         
            +
                    self.config = config
         
     | 
| 425 | 
         
            +
                    self.layer = nn.ModuleList([BertLayer(config,i) for i in range(config.num_hidden_layers)])
         
     | 
| 426 | 
         
            +
                    self.gradient_checkpointing = False
         
     | 
| 427 | 
         
            +
             
     | 
| 428 | 
         
            +
                def forward(
         
     | 
| 429 | 
         
            +
                    self,
         
     | 
| 430 | 
         
            +
                    hidden_states,
         
     | 
| 431 | 
         
            +
                    attention_mask=None,
         
     | 
| 432 | 
         
            +
                    head_mask=None,
         
     | 
| 433 | 
         
            +
                    encoder_hidden_states=None,
         
     | 
| 434 | 
         
            +
                    encoder_attention_mask=None,
         
     | 
| 435 | 
         
            +
                    past_key_values=None,
         
     | 
| 436 | 
         
            +
                    use_cache=None,
         
     | 
| 437 | 
         
            +
                    output_attentions=False,
         
     | 
| 438 | 
         
            +
                    output_hidden_states=False,
         
     | 
| 439 | 
         
            +
                    return_dict=True,
         
     | 
| 440 | 
         
            +
                    mode='multimodal',
         
     | 
| 441 | 
         
            +
                ):
         
     | 
| 442 | 
         
            +
                    all_hidden_states = () if output_hidden_states else None
         
     | 
| 443 | 
         
            +
                    all_self_attentions = () if output_attentions else None
         
     | 
| 444 | 
         
            +
                    all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
         
     | 
| 445 | 
         
            +
             
     | 
| 446 | 
         
            +
                    next_decoder_cache = () if use_cache else None
         
     | 
| 447 | 
         
            +
                           
         
     | 
| 448 | 
         
            +
                    for i in range(self.config.num_hidden_layers):
         
     | 
| 449 | 
         
            +
                        layer_module = self.layer[i]
         
     | 
| 450 | 
         
            +
                        if output_hidden_states:
         
     | 
| 451 | 
         
            +
                            all_hidden_states = all_hidden_states + (hidden_states,)
         
     | 
| 452 | 
         
            +
             
     | 
| 453 | 
         
            +
                        layer_head_mask = head_mask[i] if head_mask is not None else None
         
     | 
| 454 | 
         
            +
                        past_key_value = past_key_values[i] if past_key_values is not None else None
         
     | 
| 455 | 
         
            +
             
     | 
| 456 | 
         
            +
                        if self.gradient_checkpointing and self.training:
         
     | 
| 457 | 
         
            +
             
     | 
| 458 | 
         
            +
                            if use_cache:
         
     | 
| 459 | 
         
            +
                                logger.warn(
         
     | 
| 460 | 
         
            +
                                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
         
     | 
| 461 | 
         
            +
                                )
         
     | 
| 462 | 
         
            +
                                use_cache = False
         
     | 
| 463 | 
         
            +
             
     | 
| 464 | 
         
            +
                            def create_custom_forward(module):
         
     | 
| 465 | 
         
            +
                                def custom_forward(*inputs):
         
     | 
| 466 | 
         
            +
                                    return module(*inputs, past_key_value, output_attentions)
         
     | 
| 467 | 
         
            +
             
     | 
| 468 | 
         
            +
                                return custom_forward
         
     | 
| 469 | 
         
            +
             
     | 
| 470 | 
         
            +
                            layer_outputs = torch.utils.checkpoint.checkpoint(
         
     | 
| 471 | 
         
            +
                                create_custom_forward(layer_module),
         
     | 
| 472 | 
         
            +
                                hidden_states,
         
     | 
| 473 | 
         
            +
                                attention_mask,
         
     | 
| 474 | 
         
            +
                                layer_head_mask,
         
     | 
| 475 | 
         
            +
                                encoder_hidden_states,
         
     | 
| 476 | 
         
            +
                                encoder_attention_mask,
         
     | 
| 477 | 
         
            +
                                mode=mode,
         
     | 
| 478 | 
         
            +
                            )
         
     | 
| 479 | 
         
            +
                        else:
         
     | 
| 480 | 
         
            +
                            layer_outputs = layer_module(
         
     | 
| 481 | 
         
            +
                                hidden_states,
         
     | 
| 482 | 
         
            +
                                attention_mask,
         
     | 
| 483 | 
         
            +
                                layer_head_mask,
         
     | 
| 484 | 
         
            +
                                encoder_hidden_states,
         
     | 
| 485 | 
         
            +
                                encoder_attention_mask,
         
     | 
| 486 | 
         
            +
                                past_key_value,
         
     | 
| 487 | 
         
            +
                                output_attentions,
         
     | 
| 488 | 
         
            +
                                mode=mode,
         
     | 
| 489 | 
         
            +
                            )
         
     | 
| 490 | 
         
            +
             
     | 
| 491 | 
         
            +
                        hidden_states = layer_outputs[0]
         
     | 
| 492 | 
         
            +
                        if use_cache:
         
     | 
| 493 | 
         
            +
                            next_decoder_cache += (layer_outputs[-1],)
         
     | 
| 494 | 
         
            +
                        if output_attentions:
         
     | 
| 495 | 
         
            +
                            all_self_attentions = all_self_attentions + (layer_outputs[1],)
         
     | 
| 496 | 
         
            +
             
     | 
| 497 | 
         
            +
                    if output_hidden_states:
         
     | 
| 498 | 
         
            +
                        all_hidden_states = all_hidden_states + (hidden_states,)
         
     | 
| 499 | 
         
            +
             
     | 
| 500 | 
         
            +
                    if not return_dict:
         
     | 
| 501 | 
         
            +
                        return tuple(
         
     | 
| 502 | 
         
            +
                            v
         
     | 
| 503 | 
         
            +
                            for v in [
         
     | 
| 504 | 
         
            +
                                hidden_states,
         
     | 
| 505 | 
         
            +
                                next_decoder_cache,
         
     | 
| 506 | 
         
            +
                                all_hidden_states,
         
     | 
| 507 | 
         
            +
                                all_self_attentions,
         
     | 
| 508 | 
         
            +
                                all_cross_attentions,
         
     | 
| 509 | 
         
            +
                            ]
         
     | 
| 510 | 
         
            +
                            if v is not None
         
     | 
| 511 | 
         
            +
                        )
         
     | 
| 512 | 
         
            +
                    return BaseModelOutputWithPastAndCrossAttentions(
         
     | 
| 513 | 
         
            +
                        last_hidden_state=hidden_states,
         
     | 
| 514 | 
         
            +
                        past_key_values=next_decoder_cache,
         
     | 
| 515 | 
         
            +
                        hidden_states=all_hidden_states,
         
     | 
| 516 | 
         
            +
                        attentions=all_self_attentions,
         
     | 
| 517 | 
         
            +
                        cross_attentions=all_cross_attentions,
         
     | 
| 518 | 
         
            +
                    )
         
     | 
| 519 | 
         
            +
             
     | 
| 520 | 
         
            +
             
     | 
| 521 | 
         
            +
            class BertPooler(nn.Module):
         
     | 
| 522 | 
         
            +
                def __init__(self, config):
         
     | 
| 523 | 
         
            +
                    super().__init__()
         
     | 
| 524 | 
         
            +
                    self.dense = nn.Linear(config.hidden_size, config.hidden_size)
         
     | 
| 525 | 
         
            +
                    self.activation = nn.Tanh()
         
     | 
| 526 | 
         
            +
             
     | 
| 527 | 
         
            +
                def forward(self, hidden_states):
         
     | 
| 528 | 
         
            +
                    # We "pool" the model by simply taking the hidden state corresponding
         
     | 
| 529 | 
         
            +
                    # to the first token.
         
     | 
| 530 | 
         
            +
                    first_token_tensor = hidden_states[:, 0]
         
     | 
| 531 | 
         
            +
                    pooled_output = self.dense(first_token_tensor)
         
     | 
| 532 | 
         
            +
                    pooled_output = self.activation(pooled_output)
         
     | 
| 533 | 
         
            +
                    return pooled_output
         
     | 
| 534 | 
         
            +
             
     | 
| 535 | 
         
            +
             
     | 
| 536 | 
         
            +
            class BertPredictionHeadTransform(nn.Module):
         
     | 
| 537 | 
         
            +
                def __init__(self, config):
         
     | 
| 538 | 
         
            +
                    super().__init__()
         
     | 
| 539 | 
         
            +
                    self.dense = nn.Linear(config.hidden_size, config.hidden_size)
         
     | 
| 540 | 
         
            +
                    if isinstance(config.hidden_act, str):
         
     | 
| 541 | 
         
            +
                        self.transform_act_fn = ACT2FN[config.hidden_act]
         
     | 
| 542 | 
         
            +
                    else:
         
     | 
| 543 | 
         
            +
                        self.transform_act_fn = config.hidden_act
         
     | 
| 544 | 
         
            +
                    self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
         
     | 
| 545 | 
         
            +
             
     | 
| 546 | 
         
            +
                def forward(self, hidden_states):
         
     | 
| 547 | 
         
            +
                    hidden_states = self.dense(hidden_states)
         
     | 
| 548 | 
         
            +
                    hidden_states = self.transform_act_fn(hidden_states)
         
     | 
| 549 | 
         
            +
                    hidden_states = self.LayerNorm(hidden_states)
         
     | 
| 550 | 
         
            +
                    return hidden_states
         
     | 
| 551 | 
         
            +
             
     | 
| 552 | 
         
            +
             
     | 
| 553 | 
         
            +
            class BertLMPredictionHead(nn.Module):
         
     | 
| 554 | 
         
            +
                def __init__(self, config):
         
     | 
| 555 | 
         
            +
                    super().__init__()
         
     | 
| 556 | 
         
            +
                    self.transform = BertPredictionHeadTransform(config)
         
     | 
| 557 | 
         
            +
             
     | 
| 558 | 
         
            +
                    # The output weights are the same as the input embeddings, but there is
         
     | 
| 559 | 
         
            +
                    # an output-only bias for each token.
         
     | 
| 560 | 
         
            +
                    self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
         
     | 
| 561 | 
         
            +
             
     | 
| 562 | 
         
            +
                    self.bias = nn.Parameter(torch.zeros(config.vocab_size))
         
     | 
| 563 | 
         
            +
             
     | 
| 564 | 
         
            +
                    # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
         
     | 
| 565 | 
         
            +
                    self.decoder.bias = self.bias
         
     | 
| 566 | 
         
            +
             
     | 
| 567 | 
         
            +
                def forward(self, hidden_states):
         
     | 
| 568 | 
         
            +
                    hidden_states = self.transform(hidden_states)
         
     | 
| 569 | 
         
            +
                    hidden_states = self.decoder(hidden_states)
         
     | 
| 570 | 
         
            +
                    return hidden_states
         
     | 
| 571 | 
         
            +
             
     | 
| 572 | 
         
            +
             
     | 
| 573 | 
         
            +
            class BertOnlyMLMHead(nn.Module):
         
     | 
| 574 | 
         
            +
                def __init__(self, config):
         
     | 
| 575 | 
         
            +
                    super().__init__()
         
     | 
| 576 | 
         
            +
                    self.predictions = BertLMPredictionHead(config)
         
     | 
| 577 | 
         
            +
             
     | 
| 578 | 
         
            +
                def forward(self, sequence_output):
         
     | 
| 579 | 
         
            +
                    prediction_scores = self.predictions(sequence_output)
         
     | 
| 580 | 
         
            +
                    return prediction_scores
         
     | 
| 581 | 
         
            +
             
     | 
| 582 | 
         
            +
             
     | 
| 583 | 
         
            +
            class BertPreTrainedModel(PreTrainedModel):
         
     | 
| 584 | 
         
            +
                """
         
     | 
| 585 | 
         
            +
                An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
         
     | 
| 586 | 
         
            +
                models.
         
     | 
| 587 | 
         
            +
                """
         
     | 
| 588 | 
         
            +
             
     | 
| 589 | 
         
            +
                config_class = BertConfig
         
     | 
| 590 | 
         
            +
                base_model_prefix = "bert"
         
     | 
| 591 | 
         
            +
                _keys_to_ignore_on_load_missing = [r"position_ids"]
         
     | 
| 592 | 
         
            +
             
     | 
| 593 | 
         
            +
                def _init_weights(self, module):
         
     | 
| 594 | 
         
            +
                    """ Initialize the weights """
         
     | 
| 595 | 
         
            +
                    if isinstance(module, (nn.Linear, nn.Embedding)):
         
     | 
| 596 | 
         
            +
                        # Slightly different from the TF version which uses truncated_normal for initialization
         
     | 
| 597 | 
         
            +
                        # cf https://github.com/pytorch/pytorch/pull/5617
         
     | 
| 598 | 
         
            +
                        module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
         
     | 
| 599 | 
         
            +
                    elif isinstance(module, nn.LayerNorm):
         
     | 
| 600 | 
         
            +
                        module.bias.data.zero_()
         
     | 
| 601 | 
         
            +
                        module.weight.data.fill_(1.0)
         
     | 
| 602 | 
         
            +
                    if isinstance(module, nn.Linear) and module.bias is not None:
         
     | 
| 603 | 
         
            +
                        module.bias.data.zero_()
         
     | 
| 604 | 
         
            +
             
     | 
| 605 | 
         
            +
             
     | 
| 606 | 
         
            +
            class BertModel(BertPreTrainedModel):
         
     | 
| 607 | 
         
            +
                """
         
     | 
| 608 | 
         
            +
                The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
         
     | 
| 609 | 
         
            +
                cross-attention is added between the self-attention layers, following the architecture described in `Attention is
         
     | 
| 610 | 
         
            +
                all you need <https://arxiv.org/abs/1706.03762>`__ by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
         
     | 
| 611 | 
         
            +
                Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
         
     | 
| 612 | 
         
            +
                argument and :obj:`add_cross_attention` set to :obj:`True`; an :obj:`encoder_hidden_states` is then expected as an
         
     | 
| 613 | 
         
            +
                input to the forward pass.
         
     | 
| 614 | 
         
            +
                """
         
     | 
| 615 | 
         
            +
             
     | 
| 616 | 
         
            +
                def __init__(self, config, add_pooling_layer=True):
         
     | 
| 617 | 
         
            +
                    super().__init__(config)
         
     | 
| 618 | 
         
            +
                    self.config = config
         
     | 
| 619 | 
         
            +
             
     | 
| 620 | 
         
            +
                    self.embeddings = BertEmbeddings(config)
         
     | 
| 621 | 
         
            +
                    
         
     | 
| 622 | 
         
            +
                    self.encoder = BertEncoder(config)
         
     | 
| 623 | 
         
            +
             
     | 
| 624 | 
         
            +
                    self.pooler = BertPooler(config) if add_pooling_layer else None
         
     | 
| 625 | 
         
            +
             
     | 
| 626 | 
         
            +
                    self.init_weights()
         
     | 
| 627 | 
         
            +
             
         
     | 
| 628 | 
         
            +
             
     | 
| 629 | 
         
            +
                def get_input_embeddings(self):
         
     | 
| 630 | 
         
            +
                    return self.embeddings.word_embeddings
         
     | 
| 631 | 
         
            +
             
     | 
| 632 | 
         
            +
                def set_input_embeddings(self, value):
         
     | 
| 633 | 
         
            +
                    self.embeddings.word_embeddings = value
         
     | 
| 634 | 
         
            +
             
     | 
| 635 | 
         
            +
                def _prune_heads(self, heads_to_prune):
         
     | 
| 636 | 
         
            +
                    """
         
     | 
| 637 | 
         
            +
                    Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
         
     | 
| 638 | 
         
            +
                    class PreTrainedModel
         
     | 
| 639 | 
         
            +
                    """
         
     | 
| 640 | 
         
            +
                    for layer, heads in heads_to_prune.items():
         
     | 
| 641 | 
         
            +
                        self.encoder.layer[layer].attention.prune_heads(heads)
         
     | 
| 642 | 
         
            +
             
     | 
| 643 | 
         
            +
                
         
     | 
| 644 | 
         
            +
                def get_extended_attention_mask(self, attention_mask: Tensor, input_shape: Tuple[int], device: device, is_decoder: bool) -> Tensor:
         
     | 
| 645 | 
         
            +
                    """
         
     | 
| 646 | 
         
            +
                    Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
         
     | 
| 647 | 
         
            +
             
     | 
| 648 | 
         
            +
                    Arguments:
         
     | 
| 649 | 
         
            +
                        attention_mask (:obj:`torch.Tensor`):
         
     | 
| 650 | 
         
            +
                            Mask with ones indicating tokens to attend to, zeros for tokens to ignore.
         
     | 
| 651 | 
         
            +
                        input_shape (:obj:`Tuple[int]`):
         
     | 
| 652 | 
         
            +
                            The shape of the input to the model.
         
     | 
| 653 | 
         
            +
                        device: (:obj:`torch.device`):
         
     | 
| 654 | 
         
            +
                            The device of the input to the model.
         
     | 
| 655 | 
         
            +
             
     | 
| 656 | 
         
            +
                    Returns:
         
     | 
| 657 | 
         
            +
                        :obj:`torch.Tensor` The extended attention mask, with a the same dtype as :obj:`attention_mask.dtype`.
         
     | 
| 658 | 
         
            +
                    """
         
     | 
| 659 | 
         
            +
                    # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
         
     | 
| 660 | 
         
            +
                    # ourselves in which case we just need to make it broadcastable to all heads.
         
     | 
| 661 | 
         
            +
                    if attention_mask.dim() == 3:
         
     | 
| 662 | 
         
            +
                        extended_attention_mask = attention_mask[:, None, :, :]
         
     | 
| 663 | 
         
            +
                    elif attention_mask.dim() == 2:
         
     | 
| 664 | 
         
            +
                        # Provided a padding mask of dimensions [batch_size, seq_length]
         
     | 
| 665 | 
         
            +
                        # - if the model is a decoder, apply a causal mask in addition to the padding mask
         
     | 
| 666 | 
         
            +
                        # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
         
     | 
| 667 | 
         
            +
                        if is_decoder:
         
     | 
| 668 | 
         
            +
                            batch_size, seq_length = input_shape
         
     | 
| 669 | 
         
            +
             
     | 
| 670 | 
         
            +
                            seq_ids = torch.arange(seq_length, device=device)
         
     | 
| 671 | 
         
            +
                            causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
         
     | 
| 672 | 
         
            +
                            # in case past_key_values are used we need to add a prefix ones mask to the causal mask
         
     | 
| 673 | 
         
            +
                            # causal and attention masks must have same type with pytorch version < 1.3
         
     | 
| 674 | 
         
            +
                            causal_mask = causal_mask.to(attention_mask.dtype)
         
     | 
| 675 | 
         
            +
               
         
     | 
| 676 | 
         
            +
                            if causal_mask.shape[1] < attention_mask.shape[1]:
         
     | 
| 677 | 
         
            +
                                prefix_seq_len = attention_mask.shape[1] - causal_mask.shape[1]
         
     | 
| 678 | 
         
            +
                                causal_mask = torch.cat(
         
     | 
| 679 | 
         
            +
                                    [
         
     | 
| 680 | 
         
            +
                                        torch.ones((batch_size, seq_length, prefix_seq_len), device=device, dtype=causal_mask.dtype),
         
     | 
| 681 | 
         
            +
                                        causal_mask,
         
     | 
| 682 | 
         
            +
                                    ],
         
     | 
| 683 | 
         
            +
                                    axis=-1,
         
     | 
| 684 | 
         
            +
                                )                     
         
     | 
| 685 | 
         
            +
             
     | 
| 686 | 
         
            +
                            extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
         
     | 
| 687 | 
         
            +
                        else:
         
     | 
| 688 | 
         
            +
                            extended_attention_mask = attention_mask[:, None, None, :]
         
     | 
| 689 | 
         
            +
                    else:
         
     | 
| 690 | 
         
            +
                        raise ValueError(
         
     | 
| 691 | 
         
            +
                            "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
         
     | 
| 692 | 
         
            +
                                input_shape, attention_mask.shape
         
     | 
| 693 | 
         
            +
                            )
         
     | 
| 694 | 
         
            +
                        )
         
     | 
| 695 | 
         
            +
             
     | 
| 696 | 
         
            +
                    # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
         
     | 
| 697 | 
         
            +
                    # masked positions, this operation will create a tensor which is 0.0 for
         
     | 
| 698 | 
         
            +
                    # positions we want to attend and -10000.0 for masked positions.
         
     | 
| 699 | 
         
            +
                    # Since we are adding it to the raw scores before the softmax, this is
         
     | 
| 700 | 
         
            +
                    # effectively the same as removing these entirely.
         
     | 
| 701 | 
         
            +
                    extended_attention_mask = extended_attention_mask.to(dtype=self.dtype)  # fp16 compatibility
         
     | 
| 702 | 
         
            +
                    extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
         
     | 
| 703 | 
         
            +
                    return extended_attention_mask
         
     | 
| 704 | 
         
            +
                
         
     | 
| 705 | 
         
            +
                def forward(
         
     | 
| 706 | 
         
            +
                    self,
         
     | 
| 707 | 
         
            +
                    input_ids=None,
         
     | 
| 708 | 
         
            +
                    attention_mask=None,
         
     | 
| 709 | 
         
            +
                    position_ids=None,
         
     | 
| 710 | 
         
            +
                    head_mask=None,
         
     | 
| 711 | 
         
            +
                    inputs_embeds=None,
         
     | 
| 712 | 
         
            +
                    encoder_embeds=None,
         
     | 
| 713 | 
         
            +
                    encoder_hidden_states=None,
         
     | 
| 714 | 
         
            +
                    encoder_attention_mask=None,
         
     | 
| 715 | 
         
            +
                    past_key_values=None,
         
     | 
| 716 | 
         
            +
                    use_cache=None,
         
     | 
| 717 | 
         
            +
                    output_attentions=None,
         
     | 
| 718 | 
         
            +
                    output_hidden_states=None,
         
     | 
| 719 | 
         
            +
                    return_dict=None,
         
     | 
| 720 | 
         
            +
                    is_decoder=False,
         
     | 
| 721 | 
         
            +
                    mode='multimodal',
         
     | 
| 722 | 
         
            +
                ):
         
     | 
| 723 | 
         
            +
                    r"""
         
     | 
| 724 | 
         
            +
                    encoder_hidden_states  (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
         
     | 
| 725 | 
         
            +
                        Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
         
     | 
| 726 | 
         
            +
                        the model is configured as a decoder.
         
     | 
| 727 | 
         
            +
                    encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
         
     | 
| 728 | 
         
            +
                        Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
         
     | 
| 729 | 
         
            +
                        the cross-attention if the model is configured as a decoder. Mask values selected in ``[0, 1]``:
         
     | 
| 730 | 
         
            +
                        - 1 for tokens that are **not masked**,
         
     | 
| 731 | 
         
            +
                        - 0 for tokens that are **masked**.
         
     | 
| 732 | 
         
            +
                    past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
         
     | 
| 733 | 
         
            +
                        Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
         
     | 
| 734 | 
         
            +
                        If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids`
         
     | 
| 735 | 
         
            +
                        (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)`
         
     | 
| 736 | 
         
            +
                        instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`.
         
     | 
| 737 | 
         
            +
                    use_cache (:obj:`bool`, `optional`):
         
     | 
| 738 | 
         
            +
                        If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
         
     | 
| 739 | 
         
            +
                        decoding (see :obj:`past_key_values`).
         
     | 
| 740 | 
         
            +
                    """
         
     | 
| 741 | 
         
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         
     | 
| 742 | 
         
            +
                    output_hidden_states = (
         
     | 
| 743 | 
         
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         
     | 
| 744 | 
         
            +
                    )
         
     | 
| 745 | 
         
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         
     | 
| 746 | 
         
            +
             
     | 
| 747 | 
         
            +
                    if is_decoder:
         
     | 
| 748 | 
         
            +
                        use_cache = use_cache if use_cache is not None else self.config.use_cache
         
     | 
| 749 | 
         
            +
                    else:
         
     | 
| 750 | 
         
            +
                        use_cache = False
         
     | 
| 751 | 
         
            +
             
     | 
| 752 | 
         
            +
                    if input_ids is not None and inputs_embeds is not None:
         
     | 
| 753 | 
         
            +
                        raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
         
     | 
| 754 | 
         
            +
                    elif input_ids is not None:
         
     | 
| 755 | 
         
            +
                        input_shape = input_ids.size()
         
     | 
| 756 | 
         
            +
                        batch_size, seq_length = input_shape
         
     | 
| 757 | 
         
            +
                        device = input_ids.device
         
     | 
| 758 | 
         
            +
                    elif inputs_embeds is not None:
         
     | 
| 759 | 
         
            +
                        input_shape = inputs_embeds.size()[:-1]
         
     | 
| 760 | 
         
            +
                        batch_size, seq_length = input_shape
         
     | 
| 761 | 
         
            +
                        device = inputs_embeds.device
         
     | 
| 762 | 
         
            +
                    elif encoder_embeds is not None:    
         
     | 
| 763 | 
         
            +
                        input_shape = encoder_embeds.size()[:-1]
         
     | 
| 764 | 
         
            +
                        batch_size, seq_length = input_shape 
         
     | 
| 765 | 
         
            +
                        device = encoder_embeds.device
         
     | 
| 766 | 
         
            +
                    else:
         
     | 
| 767 | 
         
            +
                        raise ValueError("You have to specify either input_ids or inputs_embeds or encoder_embeds")
         
     | 
| 768 | 
         
            +
             
     | 
| 769 | 
         
            +
                    # past_key_values_length
         
     | 
| 770 | 
         
            +
                    past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
         
     | 
| 771 | 
         
            +
             
     | 
| 772 | 
         
            +
                    if attention_mask is None:
         
     | 
| 773 | 
         
            +
                        attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
         
     | 
| 774 | 
         
            +
                        
         
     | 
| 775 | 
         
            +
                    # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
         
     | 
| 776 | 
         
            +
                    # ourselves in which case we just need to make it broadcastable to all heads.
         
     | 
| 777 | 
         
            +
                    extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, 
         
     | 
| 778 | 
         
            +
                                                                                             device, is_decoder)
         
     | 
| 779 | 
         
            +
             
     | 
| 780 | 
         
            +
                    # If a 2D or 3D attention mask is provided for the cross-attention
         
     | 
| 781 | 
         
            +
                    # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
         
     | 
| 782 | 
         
            +
                    if encoder_hidden_states is not None:
         
     | 
| 783 | 
         
            +
                        if type(encoder_hidden_states) == list:
         
     | 
| 784 | 
         
            +
                            encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states[0].size()
         
     | 
| 785 | 
         
            +
                        else:
         
     | 
| 786 | 
         
            +
                            encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
         
     | 
| 787 | 
         
            +
                        encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
         
     | 
| 788 | 
         
            +
                        
         
     | 
| 789 | 
         
            +
                        if type(encoder_attention_mask) == list:
         
     | 
| 790 | 
         
            +
                            encoder_extended_attention_mask = [self.invert_attention_mask(mask) for mask in encoder_attention_mask]
         
     | 
| 791 | 
         
            +
                        elif encoder_attention_mask is None:
         
     | 
| 792 | 
         
            +
                            encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
         
     | 
| 793 | 
         
            +
                            encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
         
     | 
| 794 | 
         
            +
                        else:    
         
     | 
| 795 | 
         
            +
                            encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
         
     | 
| 796 | 
         
            +
                    else:
         
     | 
| 797 | 
         
            +
                        encoder_extended_attention_mask = None
         
     | 
| 798 | 
         
            +
             
     | 
| 799 | 
         
            +
                    # Prepare head mask if needed
         
     | 
| 800 | 
         
            +
                    # 1.0 in head_mask indicate we keep the head
         
     | 
| 801 | 
         
            +
                    # attention_probs has shape bsz x n_heads x N x N
         
     | 
| 802 | 
         
            +
                    # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
         
     | 
| 803 | 
         
            +
                    # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
         
     | 
| 804 | 
         
            +
                    head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
         
     | 
| 805 | 
         
            +
                    
         
     | 
| 806 | 
         
            +
                    if encoder_embeds is None:
         
     | 
| 807 | 
         
            +
                        embedding_output = self.embeddings(
         
     | 
| 808 | 
         
            +
                            input_ids=input_ids,
         
     | 
| 809 | 
         
            +
                            position_ids=position_ids,
         
     | 
| 810 | 
         
            +
                            inputs_embeds=inputs_embeds,
         
     | 
| 811 | 
         
            +
                            past_key_values_length=past_key_values_length,
         
     | 
| 812 | 
         
            +
                        )
         
     | 
| 813 | 
         
            +
                    else:
         
     | 
| 814 | 
         
            +
                        embedding_output = encoder_embeds
         
     | 
| 815 | 
         
            +
                        
         
     | 
| 816 | 
         
            +
                    encoder_outputs = self.encoder(
         
     | 
| 817 | 
         
            +
                        embedding_output,
         
     | 
| 818 | 
         
            +
                        attention_mask=extended_attention_mask,
         
     | 
| 819 | 
         
            +
                        head_mask=head_mask,
         
     | 
| 820 | 
         
            +
                        encoder_hidden_states=encoder_hidden_states,
         
     | 
| 821 | 
         
            +
                        encoder_attention_mask=encoder_extended_attention_mask,
         
     | 
| 822 | 
         
            +
                        past_key_values=past_key_values,
         
     | 
| 823 | 
         
            +
                        use_cache=use_cache,
         
     | 
| 824 | 
         
            +
                        output_attentions=output_attentions,
         
     | 
| 825 | 
         
            +
                        output_hidden_states=output_hidden_states,
         
     | 
| 826 | 
         
            +
                        return_dict=return_dict,
         
     | 
| 827 | 
         
            +
                        mode=mode,
         
     | 
| 828 | 
         
            +
                    )
         
     | 
| 829 | 
         
            +
                    sequence_output = encoder_outputs[0]
         
     | 
| 830 | 
         
            +
                    pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
         
     | 
| 831 | 
         
            +
             
     | 
| 832 | 
         
            +
                    if not return_dict:
         
     | 
| 833 | 
         
            +
                        return (sequence_output, pooled_output) + encoder_outputs[1:]
         
     | 
| 834 | 
         
            +
             
     | 
| 835 | 
         
            +
                    return BaseModelOutputWithPoolingAndCrossAttentions(
         
     | 
| 836 | 
         
            +
                        last_hidden_state=sequence_output,
         
     | 
| 837 | 
         
            +
                        pooler_output=pooled_output,
         
     | 
| 838 | 
         
            +
                        past_key_values=encoder_outputs.past_key_values,
         
     | 
| 839 | 
         
            +
                        hidden_states=encoder_outputs.hidden_states,
         
     | 
| 840 | 
         
            +
                        attentions=encoder_outputs.attentions,
         
     | 
| 841 | 
         
            +
                        cross_attentions=encoder_outputs.cross_attentions,
         
     | 
| 842 | 
         
            +
                    )
         
     | 
| 843 | 
         
            +
             
     | 
    	
        extras/BLIP/models/vit.py
    ADDED
    
    | 
         @@ -0,0 +1,308 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            '''
         
     | 
| 2 | 
         
            +
             * Copyright (c) 2022, salesforce.com, inc.
         
     | 
| 3 | 
         
            +
             * All rights reserved.
         
     | 
| 4 | 
         
            +
             * SPDX-License-Identifier: BSD-3-Clause
         
     | 
| 5 | 
         
            +
             * For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause
         
     | 
| 6 | 
         
            +
             * By Junnan Li
         
     | 
| 7 | 
         
            +
             * Based on timm code base
         
     | 
| 8 | 
         
            +
             * https://github.com/rwightman/pytorch-image-models/tree/master/timm
         
     | 
| 9 | 
         
            +
            '''
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            import torch
         
     | 
| 12 | 
         
            +
            import torch.nn as nn
         
     | 
| 13 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 14 | 
         
            +
            from functools import partial
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            from timm.models.vision_transformer import _cfg, PatchEmbed
         
     | 
| 17 | 
         
            +
            from timm.models.registry import register_model
         
     | 
| 18 | 
         
            +
            from timm.models.layers import trunc_normal_, DropPath
         
     | 
| 19 | 
         
            +
            from timm.models.helpers import named_apply, adapt_input_conv
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
            def checkpoint_wrapper(x):
         
     | 
| 23 | 
         
            +
                return x
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
            class Mlp(nn.Module):
         
     | 
| 27 | 
         
            +
                """ MLP as used in Vision Transformer, MLP-Mixer and related networks
         
     | 
| 28 | 
         
            +
                """
         
     | 
| 29 | 
         
            +
                def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
         
     | 
| 30 | 
         
            +
                    super().__init__()
         
     | 
| 31 | 
         
            +
                    out_features = out_features or in_features
         
     | 
| 32 | 
         
            +
                    hidden_features = hidden_features or in_features
         
     | 
| 33 | 
         
            +
                    self.fc1 = nn.Linear(in_features, hidden_features)
         
     | 
| 34 | 
         
            +
                    self.act = act_layer()
         
     | 
| 35 | 
         
            +
                    self.fc2 = nn.Linear(hidden_features, out_features)
         
     | 
| 36 | 
         
            +
                    self.drop = nn.Dropout(drop)
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
                def forward(self, x):
         
     | 
| 39 | 
         
            +
                    x = self.fc1(x)
         
     | 
| 40 | 
         
            +
                    x = self.act(x)
         
     | 
| 41 | 
         
            +
                    x = self.drop(x)
         
     | 
| 42 | 
         
            +
                    x = self.fc2(x)
         
     | 
| 43 | 
         
            +
                    x = self.drop(x)
         
     | 
| 44 | 
         
            +
                    return x
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
            class Attention(nn.Module):
         
     | 
| 48 | 
         
            +
                def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
         
     | 
| 49 | 
         
            +
                    super().__init__()
         
     | 
| 50 | 
         
            +
                    self.num_heads = num_heads
         
     | 
| 51 | 
         
            +
                    head_dim = dim // num_heads
         
     | 
| 52 | 
         
            +
                    # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
         
     | 
| 53 | 
         
            +
                    self.scale = qk_scale or head_dim ** -0.5
         
     | 
| 54 | 
         
            +
                    self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
         
     | 
| 55 | 
         
            +
                    self.attn_drop = nn.Dropout(attn_drop)
         
     | 
| 56 | 
         
            +
                    self.proj = nn.Linear(dim, dim)
         
     | 
| 57 | 
         
            +
                    self.proj_drop = nn.Dropout(proj_drop)
         
     | 
| 58 | 
         
            +
                    self.attn_gradients = None
         
     | 
| 59 | 
         
            +
                    self.attention_map = None
         
     | 
| 60 | 
         
            +
                    
         
     | 
| 61 | 
         
            +
                def save_attn_gradients(self, attn_gradients):
         
     | 
| 62 | 
         
            +
                    self.attn_gradients = attn_gradients
         
     | 
| 63 | 
         
            +
                    
         
     | 
| 64 | 
         
            +
                def get_attn_gradients(self):
         
     | 
| 65 | 
         
            +
                    return self.attn_gradients
         
     | 
| 66 | 
         
            +
                
         
     | 
| 67 | 
         
            +
                def save_attention_map(self, attention_map):
         
     | 
| 68 | 
         
            +
                    self.attention_map = attention_map
         
     | 
| 69 | 
         
            +
                    
         
     | 
| 70 | 
         
            +
                def get_attention_map(self):
         
     | 
| 71 | 
         
            +
                    return self.attention_map
         
     | 
| 72 | 
         
            +
                
         
     | 
| 73 | 
         
            +
                def forward(self, x, register_hook=False):
         
     | 
| 74 | 
         
            +
                    B, N, C = x.shape
         
     | 
| 75 | 
         
            +
                    qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
         
     | 
| 76 | 
         
            +
                    q, k, v = qkv[0], qkv[1], qkv[2]   # make torchscript happy (cannot use tensor as tuple)
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
                    attn = (q @ k.transpose(-2, -1)) * self.scale
         
     | 
| 79 | 
         
            +
                    attn = attn.softmax(dim=-1)
         
     | 
| 80 | 
         
            +
                    attn = self.attn_drop(attn)
         
     | 
| 81 | 
         
            +
                            
         
     | 
| 82 | 
         
            +
                    if register_hook:
         
     | 
| 83 | 
         
            +
                        self.save_attention_map(attn)
         
     | 
| 84 | 
         
            +
                        attn.register_hook(self.save_attn_gradients)        
         
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
                    x = (attn @ v).transpose(1, 2).reshape(B, N, C)
         
     | 
| 87 | 
         
            +
                    x = self.proj(x)
         
     | 
| 88 | 
         
            +
                    x = self.proj_drop(x)
         
     | 
| 89 | 
         
            +
                    return x
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
            class Block(nn.Module):
         
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
                def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
         
     | 
| 95 | 
         
            +
                             drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_grad_checkpointing=False):
         
     | 
| 96 | 
         
            +
                    super().__init__()
         
     | 
| 97 | 
         
            +
                    self.norm1 = norm_layer(dim)
         
     | 
| 98 | 
         
            +
                    self.attn = Attention(
         
     | 
| 99 | 
         
            +
                        dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
         
     | 
| 100 | 
         
            +
                    # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
         
     | 
| 101 | 
         
            +
                    self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
         
     | 
| 102 | 
         
            +
                    self.norm2 = norm_layer(dim)
         
     | 
| 103 | 
         
            +
                    mlp_hidden_dim = int(dim * mlp_ratio)
         
     | 
| 104 | 
         
            +
                    self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
                    if use_grad_checkpointing:
         
     | 
| 107 | 
         
            +
                        self.attn = checkpoint_wrapper(self.attn)
         
     | 
| 108 | 
         
            +
                        self.mlp = checkpoint_wrapper(self.mlp)
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
                def forward(self, x, register_hook=False):
         
     | 
| 111 | 
         
            +
                    x = x + self.drop_path(self.attn(self.norm1(x), register_hook=register_hook))
         
     | 
| 112 | 
         
            +
                    x = x + self.drop_path(self.mlp(self.norm2(x)))
         
     | 
| 113 | 
         
            +
                    return x
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
                
         
     | 
| 116 | 
         
            +
            class VisionTransformer(nn.Module):
         
     | 
| 117 | 
         
            +
                """ Vision Transformer
         
     | 
| 118 | 
         
            +
                A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`  -
         
     | 
| 119 | 
         
            +
                    https://arxiv.org/abs/2010.11929
         
     | 
| 120 | 
         
            +
                """
         
     | 
| 121 | 
         
            +
                def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
         
     | 
| 122 | 
         
            +
                             num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None,
         
     | 
| 123 | 
         
            +
                             drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None, 
         
     | 
| 124 | 
         
            +
                             use_grad_checkpointing=False, ckpt_layer=0):
         
     | 
| 125 | 
         
            +
                    """
         
     | 
| 126 | 
         
            +
                    Args:
         
     | 
| 127 | 
         
            +
                        img_size (int, tuple): input image size
         
     | 
| 128 | 
         
            +
                        patch_size (int, tuple): patch size
         
     | 
| 129 | 
         
            +
                        in_chans (int): number of input channels
         
     | 
| 130 | 
         
            +
                        num_classes (int): number of classes for classification head
         
     | 
| 131 | 
         
            +
                        embed_dim (int): embedding dimension
         
     | 
| 132 | 
         
            +
                        depth (int): depth of transformer
         
     | 
| 133 | 
         
            +
                        num_heads (int): number of attention heads
         
     | 
| 134 | 
         
            +
                        mlp_ratio (int): ratio of mlp hidden dim to embedding dim
         
     | 
| 135 | 
         
            +
                        qkv_bias (bool): enable bias for qkv if True
         
     | 
| 136 | 
         
            +
                        qk_scale (float): override default qk scale of head_dim ** -0.5 if set
         
     | 
| 137 | 
         
            +
                        representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set
         
     | 
| 138 | 
         
            +
                        drop_rate (float): dropout rate
         
     | 
| 139 | 
         
            +
                        attn_drop_rate (float): attention dropout rate
         
     | 
| 140 | 
         
            +
                        drop_path_rate (float): stochastic depth rate
         
     | 
| 141 | 
         
            +
                        norm_layer: (nn.Module): normalization layer
         
     | 
| 142 | 
         
            +
                    """
         
     | 
| 143 | 
         
            +
                    super().__init__()
         
     | 
| 144 | 
         
            +
                    self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
         
     | 
| 145 | 
         
            +
                    norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
         
     | 
| 146 | 
         
            +
             
     | 
| 147 | 
         
            +
                    self.patch_embed = PatchEmbed(
         
     | 
| 148 | 
         
            +
                        img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
         
     | 
| 149 | 
         
            +
             
     | 
| 150 | 
         
            +
                    num_patches = self.patch_embed.num_patches
         
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
                    self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
         
     | 
| 153 | 
         
            +
                    self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
         
     | 
| 154 | 
         
            +
                    self.pos_drop = nn.Dropout(p=drop_rate)
         
     | 
| 155 | 
         
            +
             
     | 
| 156 | 
         
            +
                    dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
         
     | 
| 157 | 
         
            +
                    self.blocks = nn.ModuleList([
         
     | 
| 158 | 
         
            +
                        Block(
         
     | 
| 159 | 
         
            +
                            dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
         
     | 
| 160 | 
         
            +
                            drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
         
     | 
| 161 | 
         
            +
                            use_grad_checkpointing=(use_grad_checkpointing and i>=depth-ckpt_layer)
         
     | 
| 162 | 
         
            +
                        )
         
     | 
| 163 | 
         
            +
                        for i in range(depth)])
         
     | 
| 164 | 
         
            +
                    self.norm = norm_layer(embed_dim)
         
     | 
| 165 | 
         
            +
             
     | 
| 166 | 
         
            +
                    trunc_normal_(self.pos_embed, std=.02)
         
     | 
| 167 | 
         
            +
                    trunc_normal_(self.cls_token, std=.02)
         
     | 
| 168 | 
         
            +
                    self.apply(self._init_weights)
         
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
                def _init_weights(self, m):
         
     | 
| 171 | 
         
            +
                    if isinstance(m, nn.Linear):
         
     | 
| 172 | 
         
            +
                        trunc_normal_(m.weight, std=.02)
         
     | 
| 173 | 
         
            +
                        if isinstance(m, nn.Linear) and m.bias is not None:
         
     | 
| 174 | 
         
            +
                            nn.init.constant_(m.bias, 0)
         
     | 
| 175 | 
         
            +
                    elif isinstance(m, nn.LayerNorm):
         
     | 
| 176 | 
         
            +
                        nn.init.constant_(m.bias, 0)
         
     | 
| 177 | 
         
            +
                        nn.init.constant_(m.weight, 1.0)
         
     | 
| 178 | 
         
            +
             
     | 
| 179 | 
         
            +
                @torch.jit.ignore
         
     | 
| 180 | 
         
            +
                def no_weight_decay(self):
         
     | 
| 181 | 
         
            +
                    return {'pos_embed', 'cls_token'}
         
     | 
| 182 | 
         
            +
             
     | 
| 183 | 
         
            +
                def forward(self, x, register_blk=-1):
         
     | 
| 184 | 
         
            +
                    B = x.shape[0]
         
     | 
| 185 | 
         
            +
                    x = self.patch_embed(x)
         
     | 
| 186 | 
         
            +
             
     | 
| 187 | 
         
            +
                    cls_tokens = self.cls_token.expand(B, -1, -1)  # stole cls_tokens impl from Phil Wang, thanks
         
     | 
| 188 | 
         
            +
                    x = torch.cat((cls_tokens, x), dim=1)
         
     | 
| 189 | 
         
            +
              
         
     | 
| 190 | 
         
            +
                    x = x + self.pos_embed[:,:x.size(1),:]
         
     | 
| 191 | 
         
            +
                    x = self.pos_drop(x)
         
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
                    for i,blk in enumerate(self.blocks):
         
     | 
| 194 | 
         
            +
                        x = blk(x, register_blk==i)
         
     | 
| 195 | 
         
            +
                    x = self.norm(x)
         
     | 
| 196 | 
         
            +
                    
         
     | 
| 197 | 
         
            +
                    return x
         
     | 
| 198 | 
         
            +
             
     | 
| 199 | 
         
            +
                @torch.jit.ignore()
         
     | 
| 200 | 
         
            +
                def load_pretrained(self, checkpoint_path, prefix=''):
         
     | 
| 201 | 
         
            +
                    _load_weights(self, checkpoint_path, prefix)
         
     | 
| 202 | 
         
            +
                    
         
     | 
| 203 | 
         
            +
             
     | 
| 204 | 
         
            +
            @torch.no_grad()
         
     | 
| 205 | 
         
            +
            def _load_weights(model: VisionTransformer, checkpoint_path: str, prefix: str = ''):
         
     | 
| 206 | 
         
            +
                """ Load weights from .npz checkpoints for official Google Brain Flax implementation
         
     | 
| 207 | 
         
            +
                """
         
     | 
| 208 | 
         
            +
                import numpy as np
         
     | 
| 209 | 
         
            +
             
     | 
| 210 | 
         
            +
                def _n2p(w, t=True):
         
     | 
| 211 | 
         
            +
                    if w.ndim == 4 and w.shape[0] == w.shape[1] == w.shape[2] == 1:
         
     | 
| 212 | 
         
            +
                        w = w.flatten()
         
     | 
| 213 | 
         
            +
                    if t:
         
     | 
| 214 | 
         
            +
                        if w.ndim == 4:
         
     | 
| 215 | 
         
            +
                            w = w.transpose([3, 2, 0, 1])
         
     | 
| 216 | 
         
            +
                        elif w.ndim == 3:
         
     | 
| 217 | 
         
            +
                            w = w.transpose([2, 0, 1])
         
     | 
| 218 | 
         
            +
                        elif w.ndim == 2:
         
     | 
| 219 | 
         
            +
                            w = w.transpose([1, 0])
         
     | 
| 220 | 
         
            +
                    return torch.from_numpy(w)
         
     | 
| 221 | 
         
            +
             
     | 
| 222 | 
         
            +
                w = np.load(checkpoint_path)
         
     | 
| 223 | 
         
            +
                if not prefix and 'opt/target/embedding/kernel' in w:
         
     | 
| 224 | 
         
            +
                    prefix = 'opt/target/'
         
     | 
| 225 | 
         
            +
             
     | 
| 226 | 
         
            +
                if hasattr(model.patch_embed, 'backbone'):
         
     | 
| 227 | 
         
            +
                    # hybrid
         
     | 
| 228 | 
         
            +
                    backbone = model.patch_embed.backbone
         
     | 
| 229 | 
         
            +
                    stem_only = not hasattr(backbone, 'stem')
         
     | 
| 230 | 
         
            +
                    stem = backbone if stem_only else backbone.stem
         
     | 
| 231 | 
         
            +
                    stem.conv.weight.copy_(adapt_input_conv(stem.conv.weight.shape[1], _n2p(w[f'{prefix}conv_root/kernel'])))
         
     | 
| 232 | 
         
            +
                    stem.norm.weight.copy_(_n2p(w[f'{prefix}gn_root/scale']))
         
     | 
| 233 | 
         
            +
                    stem.norm.bias.copy_(_n2p(w[f'{prefix}gn_root/bias']))
         
     | 
| 234 | 
         
            +
                    if not stem_only:
         
     | 
| 235 | 
         
            +
                        for i, stage in enumerate(backbone.stages):
         
     | 
| 236 | 
         
            +
                            for j, block in enumerate(stage.blocks):
         
     | 
| 237 | 
         
            +
                                bp = f'{prefix}block{i + 1}/unit{j + 1}/'
         
     | 
| 238 | 
         
            +
                                for r in range(3):
         
     | 
| 239 | 
         
            +
                                    getattr(block, f'conv{r + 1}').weight.copy_(_n2p(w[f'{bp}conv{r + 1}/kernel']))
         
     | 
| 240 | 
         
            +
                                    getattr(block, f'norm{r + 1}').weight.copy_(_n2p(w[f'{bp}gn{r + 1}/scale']))
         
     | 
| 241 | 
         
            +
                                    getattr(block, f'norm{r + 1}').bias.copy_(_n2p(w[f'{bp}gn{r + 1}/bias']))
         
     | 
| 242 | 
         
            +
                                if block.downsample is not None:
         
     | 
| 243 | 
         
            +
                                    block.downsample.conv.weight.copy_(_n2p(w[f'{bp}conv_proj/kernel']))
         
     | 
| 244 | 
         
            +
                                    block.downsample.norm.weight.copy_(_n2p(w[f'{bp}gn_proj/scale']))
         
     | 
| 245 | 
         
            +
                                    block.downsample.norm.bias.copy_(_n2p(w[f'{bp}gn_proj/bias']))
         
     | 
| 246 | 
         
            +
                    embed_conv_w = _n2p(w[f'{prefix}embedding/kernel'])
         
     | 
| 247 | 
         
            +
                else:
         
     | 
| 248 | 
         
            +
                    embed_conv_w = adapt_input_conv(
         
     | 
| 249 | 
         
            +
                        model.patch_embed.proj.weight.shape[1], _n2p(w[f'{prefix}embedding/kernel']))
         
     | 
| 250 | 
         
            +
                model.patch_embed.proj.weight.copy_(embed_conv_w)
         
     | 
| 251 | 
         
            +
                model.patch_embed.proj.bias.copy_(_n2p(w[f'{prefix}embedding/bias']))
         
     | 
| 252 | 
         
            +
                model.cls_token.copy_(_n2p(w[f'{prefix}cls'], t=False))
         
     | 
| 253 | 
         
            +
                pos_embed_w = _n2p(w[f'{prefix}Transformer/posembed_input/pos_embedding'], t=False)
         
     | 
| 254 | 
         
            +
                if pos_embed_w.shape != model.pos_embed.shape:
         
     | 
| 255 | 
         
            +
                    pos_embed_w = resize_pos_embed(  # resize pos embedding when different size from pretrained weights
         
     | 
| 256 | 
         
            +
                        pos_embed_w, model.pos_embed, getattr(model, 'num_tokens', 1), model.patch_embed.grid_size)
         
     | 
| 257 | 
         
            +
                model.pos_embed.copy_(pos_embed_w)
         
     | 
| 258 | 
         
            +
                model.norm.weight.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/scale']))
         
     | 
| 259 | 
         
            +
                model.norm.bias.copy_(_n2p(w[f'{prefix}Transformer/encoder_norm/bias']))
         
     | 
| 260 | 
         
            +
            #     if isinstance(model.head, nn.Linear) and model.head.bias.shape[0] == w[f'{prefix}head/bias'].shape[-1]:
         
     | 
| 261 | 
         
            +
            #         model.head.weight.copy_(_n2p(w[f'{prefix}head/kernel']))
         
     | 
| 262 | 
         
            +
            #         model.head.bias.copy_(_n2p(w[f'{prefix}head/bias']))
         
     | 
| 263 | 
         
            +
            #     if isinstance(getattr(model.pre_logits, 'fc', None), nn.Linear) and f'{prefix}pre_logits/bias' in w:
         
     | 
| 264 | 
         
            +
            #         model.pre_logits.fc.weight.copy_(_n2p(w[f'{prefix}pre_logits/kernel']))
         
     | 
| 265 | 
         
            +
            #         model.pre_logits.fc.bias.copy_(_n2p(w[f'{prefix}pre_logits/bias']))
         
     | 
| 266 | 
         
            +
                for i, block in enumerate(model.blocks.children()):
         
     | 
| 267 | 
         
            +
                    block_prefix = f'{prefix}Transformer/encoderblock_{i}/'
         
     | 
| 268 | 
         
            +
                    mha_prefix = block_prefix + 'MultiHeadDotProductAttention_1/'
         
     | 
| 269 | 
         
            +
                    block.norm1.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/scale']))
         
     | 
| 270 | 
         
            +
                    block.norm1.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_0/bias']))
         
     | 
| 271 | 
         
            +
                    block.attn.qkv.weight.copy_(torch.cat([
         
     | 
| 272 | 
         
            +
                        _n2p(w[f'{mha_prefix}{n}/kernel'], t=False).flatten(1).T for n in ('query', 'key', 'value')]))
         
     | 
| 273 | 
         
            +
                    block.attn.qkv.bias.copy_(torch.cat([
         
     | 
| 274 | 
         
            +
                        _n2p(w[f'{mha_prefix}{n}/bias'], t=False).reshape(-1) for n in ('query', 'key', 'value')]))
         
     | 
| 275 | 
         
            +
                    block.attn.proj.weight.copy_(_n2p(w[f'{mha_prefix}out/kernel']).flatten(1))
         
     | 
| 276 | 
         
            +
                    block.attn.proj.bias.copy_(_n2p(w[f'{mha_prefix}out/bias']))
         
     | 
| 277 | 
         
            +
                    for r in range(2):
         
     | 
| 278 | 
         
            +
                        getattr(block.mlp, f'fc{r + 1}').weight.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/kernel']))
         
     | 
| 279 | 
         
            +
                        getattr(block.mlp, f'fc{r + 1}').bias.copy_(_n2p(w[f'{block_prefix}MlpBlock_3/Dense_{r}/bias']))
         
     | 
| 280 | 
         
            +
                    block.norm2.weight.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/scale']))
         
     | 
| 281 | 
         
            +
                    block.norm2.bias.copy_(_n2p(w[f'{block_prefix}LayerNorm_2/bias']))
         
     | 
| 282 | 
         
            +
             
     | 
| 283 | 
         
            +
                        
         
     | 
| 284 | 
         
            +
            def interpolate_pos_embed(pos_embed_checkpoint, visual_encoder):        
         
     | 
| 285 | 
         
            +
                # interpolate position embedding
         
     | 
| 286 | 
         
            +
                embedding_size = pos_embed_checkpoint.shape[-1]
         
     | 
| 287 | 
         
            +
                num_patches = visual_encoder.patch_embed.num_patches
         
     | 
| 288 | 
         
            +
                num_extra_tokens = visual_encoder.pos_embed.shape[-2] - num_patches
         
     | 
| 289 | 
         
            +
                # height (== width) for the checkpoint position embedding
         
     | 
| 290 | 
         
            +
                orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
         
     | 
| 291 | 
         
            +
                # height (== width) for the new position embedding
         
     | 
| 292 | 
         
            +
                new_size = int(num_patches ** 0.5)
         
     | 
| 293 | 
         
            +
             
     | 
| 294 | 
         
            +
                if orig_size!=new_size:
         
     | 
| 295 | 
         
            +
                    # class_token and dist_token are kept unchanged
         
     | 
| 296 | 
         
            +
                    extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
         
     | 
| 297 | 
         
            +
                    # only the position tokens are interpolated
         
     | 
| 298 | 
         
            +
                    pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
         
     | 
| 299 | 
         
            +
                    pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
         
     | 
| 300 | 
         
            +
                    pos_tokens = torch.nn.functional.interpolate(
         
     | 
| 301 | 
         
            +
                        pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
         
     | 
| 302 | 
         
            +
                    pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
         
     | 
| 303 | 
         
            +
                    new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
         
     | 
| 304 | 
         
            +
                    print('reshape position embedding from %d to %d'%(orig_size ** 2,new_size ** 2))
         
     | 
| 305 | 
         
            +
                    
         
     | 
| 306 | 
         
            +
                    return new_pos_embed    
         
     | 
| 307 | 
         
            +
                else:
         
     | 
| 308 | 
         
            +
                    return pos_embed_checkpoint
         
     | 
    	
        extras/expansion.py
    ADDED
    
    | 
         @@ -0,0 +1,129 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # Fooocus GPT2 Expansion
         
     | 
| 2 | 
         
            +
            # Algorithm created by Lvmin Zhang at 2023, Stanford
         
     | 
| 3 | 
         
            +
            # If used inside Fooocus, any use is permitted.
         
     | 
| 4 | 
         
            +
            # If used outside Fooocus, only non-commercial use is permitted (CC-By NC 4.0).
         
     | 
| 5 | 
         
            +
            # This applies to the word list, vocab, model, and algorithm.
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            import os
         
     | 
| 9 | 
         
            +
            import torch
         
     | 
| 10 | 
         
            +
            import math
         
     | 
| 11 | 
         
            +
            import ldm_patched.modules.model_management as model_management
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            from transformers.generation.logits_process import LogitsProcessorList
         
     | 
| 14 | 
         
            +
            from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
         
     | 
| 15 | 
         
            +
            from modules.config import path_fooocus_expansion
         
     | 
| 16 | 
         
            +
            from ldm_patched.modules.model_patcher import ModelPatcher
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            # limitation of np.random.seed(), called from transformers.set_seed()
         
     | 
| 20 | 
         
            +
            SEED_LIMIT_NUMPY = 2**32
         
     | 
| 21 | 
         
            +
            neg_inf = - 8192.0
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
            def safe_str(x):
         
     | 
| 25 | 
         
            +
                x = str(x)
         
     | 
| 26 | 
         
            +
                for _ in range(16):
         
     | 
| 27 | 
         
            +
                    x = x.replace('  ', ' ')
         
     | 
| 28 | 
         
            +
                return x.strip(",. \r\n")
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
            def remove_pattern(x, pattern):
         
     | 
| 32 | 
         
            +
                for p in pattern:
         
     | 
| 33 | 
         
            +
                    x = x.replace(p, '')
         
     | 
| 34 | 
         
            +
                return x
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
            class FooocusExpansion:
         
     | 
| 38 | 
         
            +
                def __init__(self):
         
     | 
| 39 | 
         
            +
                    self.tokenizer = AutoTokenizer.from_pretrained(path_fooocus_expansion)
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
                    positive_words = open(os.path.join(path_fooocus_expansion, 'positive.txt'),
         
     | 
| 42 | 
         
            +
                                          encoding='utf-8').read().splitlines()
         
     | 
| 43 | 
         
            +
                    positive_words = ['Ġ' + x.lower() for x in positive_words if x != '']
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
                    self.logits_bias = torch.zeros((1, len(self.tokenizer.vocab)), dtype=torch.float32) + neg_inf
         
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
                    debug_list = []
         
     | 
| 48 | 
         
            +
                    for k, v in self.tokenizer.vocab.items():
         
     | 
| 49 | 
         
            +
                        if k in positive_words:
         
     | 
| 50 | 
         
            +
                            self.logits_bias[0, v] = 0
         
     | 
| 51 | 
         
            +
                            debug_list.append(k[1:])
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
                    print(f'Fooocus V2 Expansion: Vocab with {len(debug_list)} words.')
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
                    # debug_list = '\n'.join(sorted(debug_list))
         
     | 
| 56 | 
         
            +
                    # print(debug_list)
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
                    # t11 = self.tokenizer(',', return_tensors="np")
         
     | 
| 59 | 
         
            +
                    # t198 = self.tokenizer('\n', return_tensors="np")
         
     | 
| 60 | 
         
            +
                    # eos = self.tokenizer.eos_token_id
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                    self.model = AutoModelForCausalLM.from_pretrained(path_fooocus_expansion)
         
     | 
| 63 | 
         
            +
                    self.model.eval()
         
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
                    load_device = model_management.text_encoder_device()
         
     | 
| 66 | 
         
            +
                    offload_device = model_management.text_encoder_offload_device()
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
                    # MPS hack
         
     | 
| 69 | 
         
            +
                    if model_management.is_device_mps(load_device):
         
     | 
| 70 | 
         
            +
                        load_device = torch.device('cpu')
         
     | 
| 71 | 
         
            +
                        offload_device = torch.device('cpu')
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
                    use_fp16 = model_management.should_use_fp16(device=load_device)
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
                    if use_fp16:
         
     | 
| 76 | 
         
            +
                        self.model.half()
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
                    self.patcher = ModelPatcher(self.model, load_device=load_device, offload_device=offload_device)
         
     | 
| 79 | 
         
            +
                    print(f'Fooocus Expansion engine loaded for {load_device}, use_fp16 = {use_fp16}.')
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                @torch.no_grad()
         
     | 
| 82 | 
         
            +
                @torch.inference_mode()
         
     | 
| 83 | 
         
            +
                def logits_processor(self, input_ids, scores):
         
     | 
| 84 | 
         
            +
                    assert scores.ndim == 2 and scores.shape[0] == 1
         
     | 
| 85 | 
         
            +
                    self.logits_bias = self.logits_bias.to(scores)
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
                    bias = self.logits_bias.clone()
         
     | 
| 88 | 
         
            +
                    bias[0, input_ids[0].to(bias.device).long()] = neg_inf
         
     | 
| 89 | 
         
            +
                    bias[0, 11] = 0
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
                    return scores + bias
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
                @torch.no_grad()
         
     | 
| 94 | 
         
            +
                @torch.inference_mode()
         
     | 
| 95 | 
         
            +
                def __call__(self, prompt, seed):
         
     | 
| 96 | 
         
            +
                    if prompt == '':
         
     | 
| 97 | 
         
            +
                        return ''
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
                    if self.patcher.current_device != self.patcher.load_device:
         
     | 
| 100 | 
         
            +
                        print('Fooocus Expansion loaded by itself.')
         
     | 
| 101 | 
         
            +
                        model_management.load_model_gpu(self.patcher)
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
                    seed = int(seed) % SEED_LIMIT_NUMPY
         
     | 
| 104 | 
         
            +
                    set_seed(seed)
         
     | 
| 105 | 
         
            +
                    prompt = safe_str(prompt) + ','
         
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
                    tokenized_kwargs = self.tokenizer(prompt, return_tensors="pt")
         
     | 
| 108 | 
         
            +
                    tokenized_kwargs.data['input_ids'] = tokenized_kwargs.data['input_ids'].to(self.patcher.load_device)
         
     | 
| 109 | 
         
            +
                    tokenized_kwargs.data['attention_mask'] = tokenized_kwargs.data['attention_mask'].to(self.patcher.load_device)
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
                    current_token_length = int(tokenized_kwargs.data['input_ids'].shape[1])
         
     | 
| 112 | 
         
            +
                    max_token_length = 75 * int(math.ceil(float(current_token_length) / 75.0))
         
     | 
| 113 | 
         
            +
                    max_new_tokens = max_token_length - current_token_length
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
                    if max_new_tokens == 0:
         
     | 
| 116 | 
         
            +
                        return prompt[:-1]
         
     | 
| 117 | 
         
            +
             
     | 
| 118 | 
         
            +
                    # https://huggingface.co/blog/introducing-csearch
         
     | 
| 119 | 
         
            +
                    # https://huggingface.co/docs/transformers/generation_strategies
         
     | 
| 120 | 
         
            +
                    features = self.model.generate(**tokenized_kwargs,
         
     | 
| 121 | 
         
            +
                                                   top_k=100,
         
     | 
| 122 | 
         
            +
                                                   max_new_tokens=max_new_tokens,
         
     | 
| 123 | 
         
            +
                                                   do_sample=True,
         
     | 
| 124 | 
         
            +
                                                   logits_processor=LogitsProcessorList([self.logits_processor]))
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
                    response = self.tokenizer.batch_decode(features, skip_special_tokens=True)
         
     | 
| 127 | 
         
            +
                    result = safe_str(response[0])
         
     | 
| 128 | 
         
            +
             
     | 
| 129 | 
         
            +
                    return result
         
     | 
    	
        extras/face_crop.py
    ADDED
    
    | 
         @@ -0,0 +1,50 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import cv2
         
     | 
| 2 | 
         
            +
            import numpy as np
         
     | 
| 3 | 
         
            +
            import modules.config
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            faceRestoreHelper = None
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            def align_warp_face(self, landmark, border_mode='constant'):
         
     | 
| 10 | 
         
            +
                affine_matrix = cv2.estimateAffinePartial2D(landmark, self.face_template, method=cv2.LMEDS)[0]
         
     | 
| 11 | 
         
            +
                self.affine_matrices.append(affine_matrix)
         
     | 
| 12 | 
         
            +
                if border_mode == 'constant':
         
     | 
| 13 | 
         
            +
                    border_mode = cv2.BORDER_CONSTANT
         
     | 
| 14 | 
         
            +
                elif border_mode == 'reflect101':
         
     | 
| 15 | 
         
            +
                    border_mode = cv2.BORDER_REFLECT101
         
     | 
| 16 | 
         
            +
                elif border_mode == 'reflect':
         
     | 
| 17 | 
         
            +
                    border_mode = cv2.BORDER_REFLECT
         
     | 
| 18 | 
         
            +
                input_img = self.input_img
         
     | 
| 19 | 
         
            +
                cropped_face = cv2.warpAffine(input_img, affine_matrix, self.face_size,
         
     | 
| 20 | 
         
            +
                                              borderMode=border_mode, borderValue=(135, 133, 132))
         
     | 
| 21 | 
         
            +
                return cropped_face
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
            def crop_image(img_rgb):
         
     | 
| 25 | 
         
            +
                global faceRestoreHelper
         
     | 
| 26 | 
         
            +
                
         
     | 
| 27 | 
         
            +
                if faceRestoreHelper is None:
         
     | 
| 28 | 
         
            +
                    from extras.facexlib.utils.face_restoration_helper import FaceRestoreHelper
         
     | 
| 29 | 
         
            +
                    faceRestoreHelper = FaceRestoreHelper(
         
     | 
| 30 | 
         
            +
                        upscale_factor=1,
         
     | 
| 31 | 
         
            +
                        model_rootpath=modules.config.path_controlnet,
         
     | 
| 32 | 
         
            +
                        device='cpu'  # use cpu is safer since we are out of memory management
         
     | 
| 33 | 
         
            +
                    )
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
                faceRestoreHelper.clean_all()
         
     | 
| 36 | 
         
            +
                faceRestoreHelper.read_image(np.ascontiguousarray(img_rgb[:, :, ::-1].copy()))
         
     | 
| 37 | 
         
            +
                faceRestoreHelper.get_face_landmarks_5()
         
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
                landmarks = faceRestoreHelper.all_landmarks_5
         
     | 
| 40 | 
         
            +
                # landmarks are already sorted with confidence.
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
                if len(landmarks) == 0:
         
     | 
| 43 | 
         
            +
                    print('No face detected')
         
     | 
| 44 | 
         
            +
                    return img_rgb
         
     | 
| 45 | 
         
            +
                else:
         
     | 
| 46 | 
         
            +
                    print(f'Detected {len(landmarks)} faces')
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
                result = align_warp_face(faceRestoreHelper, landmarks[0])
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
                return np.ascontiguousarray(result[:, :, ::-1].copy())
         
     | 
    	
        extras/facexlib/detection/__init__.py
    ADDED
    
    | 
         @@ -0,0 +1,31 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            from copy import deepcopy
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            from extras.facexlib.utils import load_file_from_url
         
     | 
| 5 | 
         
            +
            from .retinaface import RetinaFace
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            def init_detection_model(model_name, half=False, device='cuda', model_rootpath=None):
         
     | 
| 9 | 
         
            +
                if model_name == 'retinaface_resnet50':
         
     | 
| 10 | 
         
            +
                    model = RetinaFace(network_name='resnet50', half=half, device=device)
         
     | 
| 11 | 
         
            +
                    model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth'
         
     | 
| 12 | 
         
            +
                elif model_name == 'retinaface_mobile0.25':
         
     | 
| 13 | 
         
            +
                    model = RetinaFace(network_name='mobile0.25', half=half, device=device)
         
     | 
| 14 | 
         
            +
                    model_url = 'https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_mobilenet0.25_Final.pth'
         
     | 
| 15 | 
         
            +
                else:
         
     | 
| 16 | 
         
            +
                    raise NotImplementedError(f'{model_name} is not implemented.')
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
                model_path = load_file_from_url(
         
     | 
| 19 | 
         
            +
                    url=model_url, model_dir='facexlib/weights', progress=True, file_name=None, save_dir=model_rootpath)
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
                # TODO: clean pretrained model
         
     | 
| 22 | 
         
            +
                load_net = torch.load(model_path, map_location=lambda storage, loc: storage)
         
     | 
| 23 | 
         
            +
                # remove unnecessary 'module.'
         
     | 
| 24 | 
         
            +
                for k, v in deepcopy(load_net).items():
         
     | 
| 25 | 
         
            +
                    if k.startswith('module.'):
         
     | 
| 26 | 
         
            +
                        load_net[k[7:]] = v
         
     | 
| 27 | 
         
            +
                        load_net.pop(k)
         
     | 
| 28 | 
         
            +
                model.load_state_dict(load_net, strict=True)
         
     | 
| 29 | 
         
            +
                model.eval()
         
     | 
| 30 | 
         
            +
                model = model.to(device)
         
     | 
| 31 | 
         
            +
                return model
         
     | 
    	
        extras/facexlib/detection/align_trans.py
    ADDED
    
    | 
         @@ -0,0 +1,219 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import cv2
         
     | 
| 2 | 
         
            +
            import numpy as np
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            from .matlab_cp2tform import get_similarity_transform_for_cv2
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            # reference facial points, a list of coordinates (x,y)
         
     | 
| 7 | 
         
            +
            REFERENCE_FACIAL_POINTS = [[30.29459953, 51.69630051], [65.53179932, 51.50139999], [48.02519989, 71.73660278],
         
     | 
| 8 | 
         
            +
                                       [33.54930115, 92.3655014], [62.72990036, 92.20410156]]
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            DEFAULT_CROP_SIZE = (96, 112)
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            class FaceWarpException(Exception):
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
                def __str__(self):
         
     | 
| 16 | 
         
            +
                    return 'In File {}:{}'.format(__file__, super.__str__(self))
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            def get_reference_facial_points(output_size=None, inner_padding_factor=0.0, outer_padding=(0, 0), default_square=False):
         
     | 
| 20 | 
         
            +
                """
         
     | 
| 21 | 
         
            +
                Function:
         
     | 
| 22 | 
         
            +
                ----------
         
     | 
| 23 | 
         
            +
                    get reference 5 key points according to crop settings:
         
     | 
| 24 | 
         
            +
                    0. Set default crop_size:
         
     | 
| 25 | 
         
            +
                        if default_square:
         
     | 
| 26 | 
         
            +
                            crop_size = (112, 112)
         
     | 
| 27 | 
         
            +
                        else:
         
     | 
| 28 | 
         
            +
                            crop_size = (96, 112)
         
     | 
| 29 | 
         
            +
                    1. Pad the crop_size by inner_padding_factor in each side;
         
     | 
| 30 | 
         
            +
                    2. Resize crop_size into (output_size - outer_padding*2),
         
     | 
| 31 | 
         
            +
                        pad into output_size with outer_padding;
         
     | 
| 32 | 
         
            +
                    3. Output reference_5point;
         
     | 
| 33 | 
         
            +
                Parameters:
         
     | 
| 34 | 
         
            +
                ----------
         
     | 
| 35 | 
         
            +
                    @output_size: (w, h) or None
         
     | 
| 36 | 
         
            +
                        size of aligned face image
         
     | 
| 37 | 
         
            +
                    @inner_padding_factor: (w_factor, h_factor)
         
     | 
| 38 | 
         
            +
                        padding factor for inner (w, h)
         
     | 
| 39 | 
         
            +
                    @outer_padding: (w_pad, h_pad)
         
     | 
| 40 | 
         
            +
                        each row is a pair of coordinates (x, y)
         
     | 
| 41 | 
         
            +
                    @default_square: True or False
         
     | 
| 42 | 
         
            +
                        if True:
         
     | 
| 43 | 
         
            +
                            default crop_size = (112, 112)
         
     | 
| 44 | 
         
            +
                        else:
         
     | 
| 45 | 
         
            +
                            default crop_size = (96, 112);
         
     | 
| 46 | 
         
            +
                    !!! make sure, if output_size is not None:
         
     | 
| 47 | 
         
            +
                            (output_size - outer_padding)
         
     | 
| 48 | 
         
            +
                            = some_scale * (default crop_size * (1.0 +
         
     | 
| 49 | 
         
            +
                            inner_padding_factor))
         
     | 
| 50 | 
         
            +
                Returns:
         
     | 
| 51 | 
         
            +
                ----------
         
     | 
| 52 | 
         
            +
                    @reference_5point: 5x2 np.array
         
     | 
| 53 | 
         
            +
                        each row is a pair of transformed coordinates (x, y)
         
     | 
| 54 | 
         
            +
                """
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
                tmp_5pts = np.array(REFERENCE_FACIAL_POINTS)
         
     | 
| 57 | 
         
            +
                tmp_crop_size = np.array(DEFAULT_CROP_SIZE)
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
                # 0) make the inner region a square
         
     | 
| 60 | 
         
            +
                if default_square:
         
     | 
| 61 | 
         
            +
                    size_diff = max(tmp_crop_size) - tmp_crop_size
         
     | 
| 62 | 
         
            +
                    tmp_5pts += size_diff / 2
         
     | 
| 63 | 
         
            +
                    tmp_crop_size += size_diff
         
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
                if (output_size and output_size[0] == tmp_crop_size[0] and output_size[1] == tmp_crop_size[1]):
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
                    return tmp_5pts
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
                if (inner_padding_factor == 0 and outer_padding == (0, 0)):
         
     | 
| 70 | 
         
            +
                    if output_size is None:
         
     | 
| 71 | 
         
            +
                        return tmp_5pts
         
     | 
| 72 | 
         
            +
                    else:
         
     | 
| 73 | 
         
            +
                        raise FaceWarpException('No paddings to do, output_size must be None or {}'.format(tmp_crop_size))
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
                # check output size
         
     | 
| 76 | 
         
            +
                if not (0 <= inner_padding_factor <= 1.0):
         
     | 
| 77 | 
         
            +
                    raise FaceWarpException('Not (0 <= inner_padding_factor <= 1.0)')
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
                if ((inner_padding_factor > 0 or outer_padding[0] > 0 or outer_padding[1] > 0) and output_size is None):
         
     | 
| 80 | 
         
            +
                    output_size = tmp_crop_size * \
         
     | 
| 81 | 
         
            +
                        (1 + inner_padding_factor * 2).astype(np.int32)
         
     | 
| 82 | 
         
            +
                    output_size += np.array(outer_padding)
         
     | 
| 83 | 
         
            +
                if not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1]):
         
     | 
| 84 | 
         
            +
                    raise FaceWarpException('Not (outer_padding[0] < output_size[0] and outer_padding[1] < output_size[1])')
         
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
                # 1) pad the inner region according inner_padding_factor
         
     | 
| 87 | 
         
            +
                if inner_padding_factor > 0:
         
     | 
| 88 | 
         
            +
                    size_diff = tmp_crop_size * inner_padding_factor * 2
         
     | 
| 89 | 
         
            +
                    tmp_5pts += size_diff / 2
         
     | 
| 90 | 
         
            +
                    tmp_crop_size += np.round(size_diff).astype(np.int32)
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
                # 2) resize the padded inner region
         
     | 
| 93 | 
         
            +
                size_bf_outer_pad = np.array(output_size) - np.array(outer_padding) * 2
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
                if size_bf_outer_pad[0] * tmp_crop_size[1] != size_bf_outer_pad[1] * tmp_crop_size[0]:
         
     | 
| 96 | 
         
            +
                    raise FaceWarpException('Must have (output_size - outer_padding)'
         
     | 
| 97 | 
         
            +
                                            '= some_scale * (crop_size * (1.0 + inner_padding_factor)')
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
                scale_factor = size_bf_outer_pad[0].astype(np.float32) / tmp_crop_size[0]
         
     | 
| 100 | 
         
            +
                tmp_5pts = tmp_5pts * scale_factor
         
     | 
| 101 | 
         
            +
                #    size_diff = tmp_crop_size * (scale_factor - min(scale_factor))
         
     | 
| 102 | 
         
            +
                #    tmp_5pts = tmp_5pts + size_diff / 2
         
     | 
| 103 | 
         
            +
                tmp_crop_size = size_bf_outer_pad
         
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
                # 3) add outer_padding to make output_size
         
     | 
| 106 | 
         
            +
                reference_5point = tmp_5pts + np.array(outer_padding)
         
     | 
| 107 | 
         
            +
                tmp_crop_size = output_size
         
     | 
| 108 | 
         
            +
             
     | 
| 109 | 
         
            +
                return reference_5point
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
             
     | 
| 112 | 
         
            +
            def get_affine_transform_matrix(src_pts, dst_pts):
         
     | 
| 113 | 
         
            +
                """
         
     | 
| 114 | 
         
            +
                Function:
         
     | 
| 115 | 
         
            +
                ----------
         
     | 
| 116 | 
         
            +
                    get affine transform matrix 'tfm' from src_pts to dst_pts
         
     | 
| 117 | 
         
            +
                Parameters:
         
     | 
| 118 | 
         
            +
                ----------
         
     | 
| 119 | 
         
            +
                    @src_pts: Kx2 np.array
         
     | 
| 120 | 
         
            +
                        source points matrix, each row is a pair of coordinates (x, y)
         
     | 
| 121 | 
         
            +
                    @dst_pts: Kx2 np.array
         
     | 
| 122 | 
         
            +
                        destination points matrix, each row is a pair of coordinates (x, y)
         
     | 
| 123 | 
         
            +
                Returns:
         
     | 
| 124 | 
         
            +
                ----------
         
     | 
| 125 | 
         
            +
                    @tfm: 2x3 np.array
         
     | 
| 126 | 
         
            +
                        transform matrix from src_pts to dst_pts
         
     | 
| 127 | 
         
            +
                """
         
     | 
| 128 | 
         
            +
             
     | 
| 129 | 
         
            +
                tfm = np.float32([[1, 0, 0], [0, 1, 0]])
         
     | 
| 130 | 
         
            +
                n_pts = src_pts.shape[0]
         
     | 
| 131 | 
         
            +
                ones = np.ones((n_pts, 1), src_pts.dtype)
         
     | 
| 132 | 
         
            +
                src_pts_ = np.hstack([src_pts, ones])
         
     | 
| 133 | 
         
            +
                dst_pts_ = np.hstack([dst_pts, ones])
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
                A, res, rank, s = np.linalg.lstsq(src_pts_, dst_pts_)
         
     | 
| 136 | 
         
            +
             
     | 
| 137 | 
         
            +
                if rank == 3:
         
     | 
| 138 | 
         
            +
                    tfm = np.float32([[A[0, 0], A[1, 0], A[2, 0]], [A[0, 1], A[1, 1], A[2, 1]]])
         
     | 
| 139 | 
         
            +
                elif rank == 2:
         
     | 
| 140 | 
         
            +
                    tfm = np.float32([[A[0, 0], A[1, 0], 0], [A[0, 1], A[1, 1], 0]])
         
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
                return tfm
         
     | 
| 143 | 
         
            +
             
     | 
| 144 | 
         
            +
             
     | 
| 145 | 
         
            +
            def warp_and_crop_face(src_img, facial_pts, reference_pts=None, crop_size=(96, 112), align_type='smilarity'):
         
     | 
| 146 | 
         
            +
                """
         
     | 
| 147 | 
         
            +
                Function:
         
     | 
| 148 | 
         
            +
                ----------
         
     | 
| 149 | 
         
            +
                    apply affine transform 'trans' to uv
         
     | 
| 150 | 
         
            +
                Parameters:
         
     | 
| 151 | 
         
            +
                ----------
         
     | 
| 152 | 
         
            +
                    @src_img: 3x3 np.array
         
     | 
| 153 | 
         
            +
                        input image
         
     | 
| 154 | 
         
            +
                    @facial_pts: could be
         
     | 
| 155 | 
         
            +
                        1)a list of K coordinates (x,y)
         
     | 
| 156 | 
         
            +
                    or
         
     | 
| 157 | 
         
            +
                        2) Kx2 or 2xK np.array
         
     | 
| 158 | 
         
            +
                        each row or col is a pair of coordinates (x, y)
         
     | 
| 159 | 
         
            +
                    @reference_pts: could be
         
     | 
| 160 | 
         
            +
                        1) a list of K coordinates (x,y)
         
     | 
| 161 | 
         
            +
                    or
         
     | 
| 162 | 
         
            +
                        2) Kx2 or 2xK np.array
         
     | 
| 163 | 
         
            +
                        each row or col is a pair of coordinates (x, y)
         
     | 
| 164 | 
         
            +
                    or
         
     | 
| 165 | 
         
            +
                        3) None
         
     | 
| 166 | 
         
            +
                        if None, use default reference facial points
         
     | 
| 167 | 
         
            +
                    @crop_size: (w, h)
         
     | 
| 168 | 
         
            +
                        output face image size
         
     | 
| 169 | 
         
            +
                    @align_type: transform type, could be one of
         
     | 
| 170 | 
         
            +
                        1) 'similarity': use similarity transform
         
     | 
| 171 | 
         
            +
                        2) 'cv2_affine': use the first 3 points to do affine transform,
         
     | 
| 172 | 
         
            +
                                by calling cv2.getAffineTransform()
         
     | 
| 173 | 
         
            +
                        3) 'affine': use all points to do affine transform
         
     | 
| 174 | 
         
            +
                Returns:
         
     | 
| 175 | 
         
            +
                ----------
         
     | 
| 176 | 
         
            +
                    @face_img: output face image with size (w, h) = @crop_size
         
     | 
| 177 | 
         
            +
                """
         
     | 
| 178 | 
         
            +
             
     | 
| 179 | 
         
            +
                if reference_pts is None:
         
     | 
| 180 | 
         
            +
                    if crop_size[0] == 96 and crop_size[1] == 112:
         
     | 
| 181 | 
         
            +
                        reference_pts = REFERENCE_FACIAL_POINTS
         
     | 
| 182 | 
         
            +
                    else:
         
     | 
| 183 | 
         
            +
                        default_square = False
         
     | 
| 184 | 
         
            +
                        inner_padding_factor = 0
         
     | 
| 185 | 
         
            +
                        outer_padding = (0, 0)
         
     | 
| 186 | 
         
            +
                        output_size = crop_size
         
     | 
| 187 | 
         
            +
             
     | 
| 188 | 
         
            +
                        reference_pts = get_reference_facial_points(output_size, inner_padding_factor, outer_padding,
         
     | 
| 189 | 
         
            +
                                                                    default_square)
         
     | 
| 190 | 
         
            +
             
     | 
| 191 | 
         
            +
                ref_pts = np.float32(reference_pts)
         
     | 
| 192 | 
         
            +
                ref_pts_shp = ref_pts.shape
         
     | 
| 193 | 
         
            +
                if max(ref_pts_shp) < 3 or min(ref_pts_shp) != 2:
         
     | 
| 194 | 
         
            +
                    raise FaceWarpException('reference_pts.shape must be (K,2) or (2,K) and K>2')
         
     | 
| 195 | 
         
            +
             
     | 
| 196 | 
         
            +
                if ref_pts_shp[0] == 2:
         
     | 
| 197 | 
         
            +
                    ref_pts = ref_pts.T
         
     | 
| 198 | 
         
            +
             
     | 
| 199 | 
         
            +
                src_pts = np.float32(facial_pts)
         
     | 
| 200 | 
         
            +
                src_pts_shp = src_pts.shape
         
     | 
| 201 | 
         
            +
                if max(src_pts_shp) < 3 or min(src_pts_shp) != 2:
         
     | 
| 202 | 
         
            +
                    raise FaceWarpException('facial_pts.shape must be (K,2) or (2,K) and K>2')
         
     | 
| 203 | 
         
            +
             
     | 
| 204 | 
         
            +
                if src_pts_shp[0] == 2:
         
     | 
| 205 | 
         
            +
                    src_pts = src_pts.T
         
     | 
| 206 | 
         
            +
             
     | 
| 207 | 
         
            +
                if src_pts.shape != ref_pts.shape:
         
     | 
| 208 | 
         
            +
                    raise FaceWarpException('facial_pts and reference_pts must have the same shape')
         
     | 
| 209 | 
         
            +
             
     | 
| 210 | 
         
            +
                if align_type == 'cv2_affine':
         
     | 
| 211 | 
         
            +
                    tfm = cv2.getAffineTransform(src_pts[0:3], ref_pts[0:3])
         
     | 
| 212 | 
         
            +
                elif align_type == 'affine':
         
     | 
| 213 | 
         
            +
                    tfm = get_affine_transform_matrix(src_pts, ref_pts)
         
     | 
| 214 | 
         
            +
                else:
         
     | 
| 215 | 
         
            +
                    tfm = get_similarity_transform_for_cv2(src_pts, ref_pts)
         
     | 
| 216 | 
         
            +
             
     | 
| 217 | 
         
            +
                face_img = cv2.warpAffine(src_img, tfm, (crop_size[0], crop_size[1]))
         
     | 
| 218 | 
         
            +
             
     | 
| 219 | 
         
            +
                return face_img
         
     | 
    	
        extras/facexlib/detection/matlab_cp2tform.py
    ADDED
    
    | 
         @@ -0,0 +1,317 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import numpy as np
         
     | 
| 2 | 
         
            +
            from numpy.linalg import inv, lstsq
         
     | 
| 3 | 
         
            +
            from numpy.linalg import matrix_rank as rank
         
     | 
| 4 | 
         
            +
            from numpy.linalg import norm
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            class MatlabCp2tormException(Exception):
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
                def __str__(self):
         
     | 
| 10 | 
         
            +
                    return 'In File {}:{}'.format(__file__, super.__str__(self))
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            def tformfwd(trans, uv):
         
     | 
| 14 | 
         
            +
                """
         
     | 
| 15 | 
         
            +
                Function:
         
     | 
| 16 | 
         
            +
                ----------
         
     | 
| 17 | 
         
            +
                    apply affine transform 'trans' to uv
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
                Parameters:
         
     | 
| 20 | 
         
            +
                ----------
         
     | 
| 21 | 
         
            +
                    @trans: 3x3 np.array
         
     | 
| 22 | 
         
            +
                        transform matrix
         
     | 
| 23 | 
         
            +
                    @uv: Kx2 np.array
         
     | 
| 24 | 
         
            +
                        each row is a pair of coordinates (x, y)
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
                Returns:
         
     | 
| 27 | 
         
            +
                ----------
         
     | 
| 28 | 
         
            +
                    @xy: Kx2 np.array
         
     | 
| 29 | 
         
            +
                        each row is a pair of transformed coordinates (x, y)
         
     | 
| 30 | 
         
            +
                """
         
     | 
| 31 | 
         
            +
                uv = np.hstack((uv, np.ones((uv.shape[0], 1))))
         
     | 
| 32 | 
         
            +
                xy = np.dot(uv, trans)
         
     | 
| 33 | 
         
            +
                xy = xy[:, 0:-1]
         
     | 
| 34 | 
         
            +
                return xy
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
            def tforminv(trans, uv):
         
     | 
| 38 | 
         
            +
                """
         
     | 
| 39 | 
         
            +
                Function:
         
     | 
| 40 | 
         
            +
                ----------
         
     | 
| 41 | 
         
            +
                    apply the inverse of affine transform 'trans' to uv
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
                Parameters:
         
     | 
| 44 | 
         
            +
                ----------
         
     | 
| 45 | 
         
            +
                    @trans: 3x3 np.array
         
     | 
| 46 | 
         
            +
                        transform matrix
         
     | 
| 47 | 
         
            +
                    @uv: Kx2 np.array
         
     | 
| 48 | 
         
            +
                        each row is a pair of coordinates (x, y)
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
                Returns:
         
     | 
| 51 | 
         
            +
                ----------
         
     | 
| 52 | 
         
            +
                    @xy: Kx2 np.array
         
     | 
| 53 | 
         
            +
                        each row is a pair of inverse-transformed coordinates (x, y)
         
     | 
| 54 | 
         
            +
                """
         
     | 
| 55 | 
         
            +
                Tinv = inv(trans)
         
     | 
| 56 | 
         
            +
                xy = tformfwd(Tinv, uv)
         
     | 
| 57 | 
         
            +
                return xy
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
            def findNonreflectiveSimilarity(uv, xy, options=None):
         
     | 
| 61 | 
         
            +
                options = {'K': 2}
         
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
                K = options['K']
         
     | 
| 64 | 
         
            +
                M = xy.shape[0]
         
     | 
| 65 | 
         
            +
                x = xy[:, 0].reshape((-1, 1))  # use reshape to keep a column vector
         
     | 
| 66 | 
         
            +
                y = xy[:, 1].reshape((-1, 1))  # use reshape to keep a column vector
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
                tmp1 = np.hstack((x, y, np.ones((M, 1)), np.zeros((M, 1))))
         
     | 
| 69 | 
         
            +
                tmp2 = np.hstack((y, -x, np.zeros((M, 1)), np.ones((M, 1))))
         
     | 
| 70 | 
         
            +
                X = np.vstack((tmp1, tmp2))
         
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
                u = uv[:, 0].reshape((-1, 1))  # use reshape to keep a column vector
         
     | 
| 73 | 
         
            +
                v = uv[:, 1].reshape((-1, 1))  # use reshape to keep a column vector
         
     | 
| 74 | 
         
            +
                U = np.vstack((u, v))
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
                # We know that X * r = U
         
     | 
| 77 | 
         
            +
                if rank(X) >= 2 * K:
         
     | 
| 78 | 
         
            +
                    r, _, _, _ = lstsq(X, U, rcond=-1)
         
     | 
| 79 | 
         
            +
                    r = np.squeeze(r)
         
     | 
| 80 | 
         
            +
                else:
         
     | 
| 81 | 
         
            +
                    raise Exception('cp2tform:twoUniquePointsReq')
         
     | 
| 82 | 
         
            +
                sc = r[0]
         
     | 
| 83 | 
         
            +
                ss = r[1]
         
     | 
| 84 | 
         
            +
                tx = r[2]
         
     | 
| 85 | 
         
            +
                ty = r[3]
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
                Tinv = np.array([[sc, -ss, 0], [ss, sc, 0], [tx, ty, 1]])
         
     | 
| 88 | 
         
            +
                T = inv(Tinv)
         
     | 
| 89 | 
         
            +
                T[:, 2] = np.array([0, 0, 1])
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
                return T, Tinv
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
            def findSimilarity(uv, xy, options=None):
         
     | 
| 95 | 
         
            +
                options = {'K': 2}
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
                #    uv = np.array(uv)
         
     | 
| 98 | 
         
            +
                #    xy = np.array(xy)
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
                # Solve for trans1
         
     | 
| 101 | 
         
            +
                trans1, trans1_inv = findNonreflectiveSimilarity(uv, xy, options)
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
                # Solve for trans2
         
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
                # manually reflect the xy data across the Y-axis
         
     | 
| 106 | 
         
            +
                xyR = xy
         
     | 
| 107 | 
         
            +
                xyR[:, 0] = -1 * xyR[:, 0]
         
     | 
| 108 | 
         
            +
             
     | 
| 109 | 
         
            +
                trans2r, trans2r_inv = findNonreflectiveSimilarity(uv, xyR, options)
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
                # manually reflect the tform to undo the reflection done on xyR
         
     | 
| 112 | 
         
            +
                TreflectY = np.array([[-1, 0, 0], [0, 1, 0], [0, 0, 1]])
         
     | 
| 113 | 
         
            +
             
     | 
| 114 | 
         
            +
                trans2 = np.dot(trans2r, TreflectY)
         
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
                # Figure out if trans1 or trans2 is better
         
     | 
| 117 | 
         
            +
                xy1 = tformfwd(trans1, uv)
         
     | 
| 118 | 
         
            +
                norm1 = norm(xy1 - xy)
         
     | 
| 119 | 
         
            +
             
     | 
| 120 | 
         
            +
                xy2 = tformfwd(trans2, uv)
         
     | 
| 121 | 
         
            +
                norm2 = norm(xy2 - xy)
         
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
                if norm1 <= norm2:
         
     | 
| 124 | 
         
            +
                    return trans1, trans1_inv
         
     | 
| 125 | 
         
            +
                else:
         
     | 
| 126 | 
         
            +
                    trans2_inv = inv(trans2)
         
     | 
| 127 | 
         
            +
                    return trans2, trans2_inv
         
     | 
| 128 | 
         
            +
             
     | 
| 129 | 
         
            +
             
     | 
| 130 | 
         
            +
            def get_similarity_transform(src_pts, dst_pts, reflective=True):
         
     | 
| 131 | 
         
            +
                """
         
     | 
| 132 | 
         
            +
                Function:
         
     | 
| 133 | 
         
            +
                ----------
         
     | 
| 134 | 
         
            +
                    Find Similarity Transform Matrix 'trans':
         
     | 
| 135 | 
         
            +
                        u = src_pts[:, 0]
         
     | 
| 136 | 
         
            +
                        v = src_pts[:, 1]
         
     | 
| 137 | 
         
            +
                        x = dst_pts[:, 0]
         
     | 
| 138 | 
         
            +
                        y = dst_pts[:, 1]
         
     | 
| 139 | 
         
            +
                        [x, y, 1] = [u, v, 1] * trans
         
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
                Parameters:
         
     | 
| 142 | 
         
            +
                ----------
         
     | 
| 143 | 
         
            +
                    @src_pts: Kx2 np.array
         
     | 
| 144 | 
         
            +
                        source points, each row is a pair of coordinates (x, y)
         
     | 
| 145 | 
         
            +
                    @dst_pts: Kx2 np.array
         
     | 
| 146 | 
         
            +
                        destination points, each row is a pair of transformed
         
     | 
| 147 | 
         
            +
                        coordinates (x, y)
         
     | 
| 148 | 
         
            +
                    @reflective: True or False
         
     | 
| 149 | 
         
            +
                        if True:
         
     | 
| 150 | 
         
            +
                            use reflective similarity transform
         
     | 
| 151 | 
         
            +
                        else:
         
     | 
| 152 | 
         
            +
                            use non-reflective similarity transform
         
     | 
| 153 | 
         
            +
             
     | 
| 154 | 
         
            +
                Returns:
         
     | 
| 155 | 
         
            +
                ----------
         
     | 
| 156 | 
         
            +
                   @trans: 3x3 np.array
         
     | 
| 157 | 
         
            +
                        transform matrix from uv to xy
         
     | 
| 158 | 
         
            +
                    trans_inv: 3x3 np.array
         
     | 
| 159 | 
         
            +
                        inverse of trans, transform matrix from xy to uv
         
     | 
| 160 | 
         
            +
                """
         
     | 
| 161 | 
         
            +
             
     | 
| 162 | 
         
            +
                if reflective:
         
     | 
| 163 | 
         
            +
                    trans, trans_inv = findSimilarity(src_pts, dst_pts)
         
     | 
| 164 | 
         
            +
                else:
         
     | 
| 165 | 
         
            +
                    trans, trans_inv = findNonreflectiveSimilarity(src_pts, dst_pts)
         
     | 
| 166 | 
         
            +
             
     | 
| 167 | 
         
            +
                return trans, trans_inv
         
     | 
| 168 | 
         
            +
             
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
            def cvt_tform_mat_for_cv2(trans):
         
     | 
| 171 | 
         
            +
                """
         
     | 
| 172 | 
         
            +
                Function:
         
     | 
| 173 | 
         
            +
                ----------
         
     | 
| 174 | 
         
            +
                    Convert Transform Matrix 'trans' into 'cv2_trans' which could be
         
     | 
| 175 | 
         
            +
                    directly used by cv2.warpAffine():
         
     | 
| 176 | 
         
            +
                        u = src_pts[:, 0]
         
     | 
| 177 | 
         
            +
                        v = src_pts[:, 1]
         
     | 
| 178 | 
         
            +
                        x = dst_pts[:, 0]
         
     | 
| 179 | 
         
            +
                        y = dst_pts[:, 1]
         
     | 
| 180 | 
         
            +
                        [x, y].T = cv_trans * [u, v, 1].T
         
     | 
| 181 | 
         
            +
             
     | 
| 182 | 
         
            +
                Parameters:
         
     | 
| 183 | 
         
            +
                ----------
         
     | 
| 184 | 
         
            +
                    @trans: 3x3 np.array
         
     | 
| 185 | 
         
            +
                        transform matrix from uv to xy
         
     | 
| 186 | 
         
            +
             
     | 
| 187 | 
         
            +
                Returns:
         
     | 
| 188 | 
         
            +
                ----------
         
     | 
| 189 | 
         
            +
                    @cv2_trans: 2x3 np.array
         
     | 
| 190 | 
         
            +
                        transform matrix from src_pts to dst_pts, could be directly used
         
     | 
| 191 | 
         
            +
                        for cv2.warpAffine()
         
     | 
| 192 | 
         
            +
                """
         
     | 
| 193 | 
         
            +
                cv2_trans = trans[:, 0:2].T
         
     | 
| 194 | 
         
            +
             
     | 
| 195 | 
         
            +
                return cv2_trans
         
     | 
| 196 | 
         
            +
             
     | 
| 197 | 
         
            +
             
     | 
| 198 | 
         
            +
            def get_similarity_transform_for_cv2(src_pts, dst_pts, reflective=True):
         
     | 
| 199 | 
         
            +
                """
         
     | 
| 200 | 
         
            +
                Function:
         
     | 
| 201 | 
         
            +
                ----------
         
     | 
| 202 | 
         
            +
                    Find Similarity Transform Matrix 'cv2_trans' which could be
         
     | 
| 203 | 
         
            +
                    directly used by cv2.warpAffine():
         
     | 
| 204 | 
         
            +
                        u = src_pts[:, 0]
         
     | 
| 205 | 
         
            +
                        v = src_pts[:, 1]
         
     | 
| 206 | 
         
            +
                        x = dst_pts[:, 0]
         
     | 
| 207 | 
         
            +
                        y = dst_pts[:, 1]
         
     | 
| 208 | 
         
            +
                        [x, y].T = cv_trans * [u, v, 1].T
         
     | 
| 209 | 
         
            +
             
     | 
| 210 | 
         
            +
                Parameters:
         
     | 
| 211 | 
         
            +
                ----------
         
     | 
| 212 | 
         
            +
                    @src_pts: Kx2 np.array
         
     | 
| 213 | 
         
            +
                        source points, each row is a pair of coordinates (x, y)
         
     | 
| 214 | 
         
            +
                    @dst_pts: Kx2 np.array
         
     | 
| 215 | 
         
            +
                        destination points, each row is a pair of transformed
         
     | 
| 216 | 
         
            +
                        coordinates (x, y)
         
     | 
| 217 | 
         
            +
                    reflective: True or False
         
     | 
| 218 | 
         
            +
                        if True:
         
     | 
| 219 | 
         
            +
                            use reflective similarity transform
         
     | 
| 220 | 
         
            +
                        else:
         
     | 
| 221 | 
         
            +
                            use non-reflective similarity transform
         
     | 
| 222 | 
         
            +
             
     | 
| 223 | 
         
            +
                Returns:
         
     | 
| 224 | 
         
            +
                ----------
         
     | 
| 225 | 
         
            +
                    @cv2_trans: 2x3 np.array
         
     | 
| 226 | 
         
            +
                        transform matrix from src_pts to dst_pts, could be directly used
         
     | 
| 227 | 
         
            +
                        for cv2.warpAffine()
         
     | 
| 228 | 
         
            +
                """
         
     | 
| 229 | 
         
            +
                trans, trans_inv = get_similarity_transform(src_pts, dst_pts, reflective)
         
     | 
| 230 | 
         
            +
                cv2_trans = cvt_tform_mat_for_cv2(trans)
         
     | 
| 231 | 
         
            +
             
     | 
| 232 | 
         
            +
                return cv2_trans
         
     | 
| 233 | 
         
            +
             
     | 
| 234 | 
         
            +
             
     | 
| 235 | 
         
            +
            if __name__ == '__main__':
         
     | 
| 236 | 
         
            +
                """
         
     | 
| 237 | 
         
            +
                u = [0, 6, -2]
         
     | 
| 238 | 
         
            +
                v = [0, 3, 5]
         
     | 
| 239 | 
         
            +
                x = [-1, 0, 4]
         
     | 
| 240 | 
         
            +
                y = [-1, -10, 4]
         
     | 
| 241 | 
         
            +
             
     | 
| 242 | 
         
            +
                # In Matlab, run:
         
     | 
| 243 | 
         
            +
                #
         
     | 
| 244 | 
         
            +
                #   uv = [u'; v'];
         
     | 
| 245 | 
         
            +
                #   xy = [x'; y'];
         
     | 
| 246 | 
         
            +
                #   tform_sim=cp2tform(uv,xy,'similarity');
         
     | 
| 247 | 
         
            +
                #
         
     | 
| 248 | 
         
            +
                #   trans = tform_sim.tdata.T
         
     | 
| 249 | 
         
            +
                #   ans =
         
     | 
| 250 | 
         
            +
                #       -0.0764   -1.6190         0
         
     | 
| 251 | 
         
            +
                #        1.6190   -0.0764         0
         
     | 
| 252 | 
         
            +
                #       -3.2156    0.0290    1.0000
         
     | 
| 253 | 
         
            +
                #   trans_inv = tform_sim.tdata.Tinv
         
     | 
| 254 | 
         
            +
                #    ans =
         
     | 
| 255 | 
         
            +
                #
         
     | 
| 256 | 
         
            +
                #       -0.0291    0.6163         0
         
     | 
| 257 | 
         
            +
                #       -0.6163   -0.0291         0
         
     | 
| 258 | 
         
            +
                #       -0.0756    1.9826    1.0000
         
     | 
| 259 | 
         
            +
                #    xy_m=tformfwd(tform_sim, u,v)
         
     | 
| 260 | 
         
            +
                #
         
     | 
| 261 | 
         
            +
                #    xy_m =
         
     | 
| 262 | 
         
            +
                #
         
     | 
| 263 | 
         
            +
                #       -3.2156    0.0290
         
     | 
| 264 | 
         
            +
                #        1.1833   -9.9143
         
     | 
| 265 | 
         
            +
                #        5.0323    2.8853
         
     | 
| 266 | 
         
            +
                #    uv_m=tforminv(tform_sim, x,y)
         
     | 
| 267 | 
         
            +
                #
         
     | 
| 268 | 
         
            +
                #    uv_m =
         
     | 
| 269 | 
         
            +
                #
         
     | 
| 270 | 
         
            +
                #        0.5698    1.3953
         
     | 
| 271 | 
         
            +
                #        6.0872    2.2733
         
     | 
| 272 | 
         
            +
                #       -2.6570    4.3314
         
     | 
| 273 | 
         
            +
                """
         
     | 
| 274 | 
         
            +
                u = [0, 6, -2]
         
     | 
| 275 | 
         
            +
                v = [0, 3, 5]
         
     | 
| 276 | 
         
            +
                x = [-1, 0, 4]
         
     | 
| 277 | 
         
            +
                y = [-1, -10, 4]
         
     | 
| 278 | 
         
            +
             
     | 
| 279 | 
         
            +
                uv = np.array((u, v)).T
         
     | 
| 280 | 
         
            +
                xy = np.array((x, y)).T
         
     | 
| 281 | 
         
            +
             
     | 
| 282 | 
         
            +
                print('\n--->uv:')
         
     | 
| 283 | 
         
            +
                print(uv)
         
     | 
| 284 | 
         
            +
                print('\n--->xy:')
         
     | 
| 285 | 
         
            +
                print(xy)
         
     | 
| 286 | 
         
            +
             
     | 
| 287 | 
         
            +
                trans, trans_inv = get_similarity_transform(uv, xy)
         
     | 
| 288 | 
         
            +
             
     | 
| 289 | 
         
            +
                print('\n--->trans matrix:')
         
     | 
| 290 | 
         
            +
                print(trans)
         
     | 
| 291 | 
         
            +
             
     | 
| 292 | 
         
            +
                print('\n--->trans_inv matrix:')
         
     | 
| 293 | 
         
            +
                print(trans_inv)
         
     | 
| 294 | 
         
            +
             
     | 
| 295 | 
         
            +
                print('\n---> apply transform to uv')
         
     | 
| 296 | 
         
            +
                print('\nxy_m = uv_augmented * trans')
         
     | 
| 297 | 
         
            +
                uv_aug = np.hstack((uv, np.ones((uv.shape[0], 1))))
         
     | 
| 298 | 
         
            +
                xy_m = np.dot(uv_aug, trans)
         
     | 
| 299 | 
         
            +
                print(xy_m)
         
     | 
| 300 | 
         
            +
             
     | 
| 301 | 
         
            +
                print('\nxy_m = tformfwd(trans, uv)')
         
     | 
| 302 | 
         
            +
                xy_m = tformfwd(trans, uv)
         
     | 
| 303 | 
         
            +
                print(xy_m)
         
     | 
| 304 | 
         
            +
             
     | 
| 305 | 
         
            +
                print('\n---> apply inverse transform to xy')
         
     | 
| 306 | 
         
            +
                print('\nuv_m = xy_augmented * trans_inv')
         
     | 
| 307 | 
         
            +
                xy_aug = np.hstack((xy, np.ones((xy.shape[0], 1))))
         
     | 
| 308 | 
         
            +
                uv_m = np.dot(xy_aug, trans_inv)
         
     | 
| 309 | 
         
            +
                print(uv_m)
         
     | 
| 310 | 
         
            +
             
     | 
| 311 | 
         
            +
                print('\nuv_m = tformfwd(trans_inv, xy)')
         
     | 
| 312 | 
         
            +
                uv_m = tformfwd(trans_inv, xy)
         
     | 
| 313 | 
         
            +
                print(uv_m)
         
     | 
| 314 | 
         
            +
             
     | 
| 315 | 
         
            +
                uv_m = tforminv(trans, xy)
         
     | 
| 316 | 
         
            +
                print('\nuv_m = tforminv(trans, xy)')
         
     | 
| 317 | 
         
            +
                print(uv_m)
         
     | 
    	
        extras/facexlib/detection/retinaface.py
    ADDED
    
    | 
         @@ -0,0 +1,366 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import cv2
         
     | 
| 2 | 
         
            +
            import numpy as np
         
     | 
| 3 | 
         
            +
            import torch
         
     | 
| 4 | 
         
            +
            import torch.nn as nn
         
     | 
| 5 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 6 | 
         
            +
            from PIL import Image
         
     | 
| 7 | 
         
            +
            from torchvision.models._utils import IntermediateLayerGetter as IntermediateLayerGetter
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            from extras.facexlib.detection.align_trans import get_reference_facial_points, warp_and_crop_face
         
     | 
| 10 | 
         
            +
            from extras.facexlib.detection.retinaface_net import FPN, SSH, MobileNetV1, make_bbox_head, make_class_head, make_landmark_head
         
     | 
| 11 | 
         
            +
            from extras.facexlib.detection.retinaface_utils import (PriorBox, batched_decode, batched_decode_landm, decode, decode_landm,
         
     | 
| 12 | 
         
            +
                                                             py_cpu_nms)
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            def generate_config(network_name):
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
                cfg_mnet = {
         
     | 
| 18 | 
         
            +
                    'name': 'mobilenet0.25',
         
     | 
| 19 | 
         
            +
                    'min_sizes': [[16, 32], [64, 128], [256, 512]],
         
     | 
| 20 | 
         
            +
                    'steps': [8, 16, 32],
         
     | 
| 21 | 
         
            +
                    'variance': [0.1, 0.2],
         
     | 
| 22 | 
         
            +
                    'clip': False,
         
     | 
| 23 | 
         
            +
                    'loc_weight': 2.0,
         
     | 
| 24 | 
         
            +
                    'gpu_train': True,
         
     | 
| 25 | 
         
            +
                    'batch_size': 32,
         
     | 
| 26 | 
         
            +
                    'ngpu': 1,
         
     | 
| 27 | 
         
            +
                    'epoch': 250,
         
     | 
| 28 | 
         
            +
                    'decay1': 190,
         
     | 
| 29 | 
         
            +
                    'decay2': 220,
         
     | 
| 30 | 
         
            +
                    'image_size': 640,
         
     | 
| 31 | 
         
            +
                    'return_layers': {
         
     | 
| 32 | 
         
            +
                        'stage1': 1,
         
     | 
| 33 | 
         
            +
                        'stage2': 2,
         
     | 
| 34 | 
         
            +
                        'stage3': 3
         
     | 
| 35 | 
         
            +
                    },
         
     | 
| 36 | 
         
            +
                    'in_channel': 32,
         
     | 
| 37 | 
         
            +
                    'out_channel': 64
         
     | 
| 38 | 
         
            +
                }
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
                cfg_re50 = {
         
     | 
| 41 | 
         
            +
                    'name': 'Resnet50',
         
     | 
| 42 | 
         
            +
                    'min_sizes': [[16, 32], [64, 128], [256, 512]],
         
     | 
| 43 | 
         
            +
                    'steps': [8, 16, 32],
         
     | 
| 44 | 
         
            +
                    'variance': [0.1, 0.2],
         
     | 
| 45 | 
         
            +
                    'clip': False,
         
     | 
| 46 | 
         
            +
                    'loc_weight': 2.0,
         
     | 
| 47 | 
         
            +
                    'gpu_train': True,
         
     | 
| 48 | 
         
            +
                    'batch_size': 24,
         
     | 
| 49 | 
         
            +
                    'ngpu': 4,
         
     | 
| 50 | 
         
            +
                    'epoch': 100,
         
     | 
| 51 | 
         
            +
                    'decay1': 70,
         
     | 
| 52 | 
         
            +
                    'decay2': 90,
         
     | 
| 53 | 
         
            +
                    'image_size': 840,
         
     | 
| 54 | 
         
            +
                    'return_layers': {
         
     | 
| 55 | 
         
            +
                        'layer2': 1,
         
     | 
| 56 | 
         
            +
                        'layer3': 2,
         
     | 
| 57 | 
         
            +
                        'layer4': 3
         
     | 
| 58 | 
         
            +
                    },
         
     | 
| 59 | 
         
            +
                    'in_channel': 256,
         
     | 
| 60 | 
         
            +
                    'out_channel': 256
         
     | 
| 61 | 
         
            +
                }
         
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
                if network_name == 'mobile0.25':
         
     | 
| 64 | 
         
            +
                    return cfg_mnet
         
     | 
| 65 | 
         
            +
                elif network_name == 'resnet50':
         
     | 
| 66 | 
         
            +
                    return cfg_re50
         
     | 
| 67 | 
         
            +
                else:
         
     | 
| 68 | 
         
            +
                    raise NotImplementedError(f'network_name={network_name}')
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
            class RetinaFace(nn.Module):
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
                def __init__(self, network_name='resnet50', half=False, phase='test', device=None):
         
     | 
| 74 | 
         
            +
                    self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') if device is None else device
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
                    super(RetinaFace, self).__init__()
         
     | 
| 77 | 
         
            +
                    self.half_inference = half
         
     | 
| 78 | 
         
            +
                    cfg = generate_config(network_name)
         
     | 
| 79 | 
         
            +
                    self.backbone = cfg['name']
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                    self.model_name = f'retinaface_{network_name}'
         
     | 
| 82 | 
         
            +
                    self.cfg = cfg
         
     | 
| 83 | 
         
            +
                    self.phase = phase
         
     | 
| 84 | 
         
            +
                    self.target_size, self.max_size = 1600, 2150
         
     | 
| 85 | 
         
            +
                    self.resize, self.scale, self.scale1 = 1., None, None
         
     | 
| 86 | 
         
            +
                    self.mean_tensor = torch.tensor([[[[104.]], [[117.]], [[123.]]]], device=self.device)
         
     | 
| 87 | 
         
            +
                    self.reference = get_reference_facial_points(default_square=True)
         
     | 
| 88 | 
         
            +
                    # Build network.
         
     | 
| 89 | 
         
            +
                    backbone = None
         
     | 
| 90 | 
         
            +
                    if cfg['name'] == 'mobilenet0.25':
         
     | 
| 91 | 
         
            +
                        backbone = MobileNetV1()
         
     | 
| 92 | 
         
            +
                        self.body = IntermediateLayerGetter(backbone, cfg['return_layers'])
         
     | 
| 93 | 
         
            +
                    elif cfg['name'] == 'Resnet50':
         
     | 
| 94 | 
         
            +
                        import torchvision.models as models
         
     | 
| 95 | 
         
            +
                        backbone = models.resnet50(weights=None)
         
     | 
| 96 | 
         
            +
                        self.body = IntermediateLayerGetter(backbone, cfg['return_layers'])
         
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
                    in_channels_stage2 = cfg['in_channel']
         
     | 
| 99 | 
         
            +
                    in_channels_list = [
         
     | 
| 100 | 
         
            +
                        in_channels_stage2 * 2,
         
     | 
| 101 | 
         
            +
                        in_channels_stage2 * 4,
         
     | 
| 102 | 
         
            +
                        in_channels_stage2 * 8,
         
     | 
| 103 | 
         
            +
                    ]
         
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
                    out_channels = cfg['out_channel']
         
     | 
| 106 | 
         
            +
                    self.fpn = FPN(in_channels_list, out_channels)
         
     | 
| 107 | 
         
            +
                    self.ssh1 = SSH(out_channels, out_channels)
         
     | 
| 108 | 
         
            +
                    self.ssh2 = SSH(out_channels, out_channels)
         
     | 
| 109 | 
         
            +
                    self.ssh3 = SSH(out_channels, out_channels)
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
                    self.ClassHead = make_class_head(fpn_num=3, inchannels=cfg['out_channel'])
         
     | 
| 112 | 
         
            +
                    self.BboxHead = make_bbox_head(fpn_num=3, inchannels=cfg['out_channel'])
         
     | 
| 113 | 
         
            +
                    self.LandmarkHead = make_landmark_head(fpn_num=3, inchannels=cfg['out_channel'])
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
                    self.to(self.device)
         
     | 
| 116 | 
         
            +
                    self.eval()
         
     | 
| 117 | 
         
            +
                    if self.half_inference:
         
     | 
| 118 | 
         
            +
                        self.half()
         
     | 
| 119 | 
         
            +
             
     | 
| 120 | 
         
            +
                def forward(self, inputs):
         
     | 
| 121 | 
         
            +
                    out = self.body(inputs)
         
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
                    if self.backbone == 'mobilenet0.25' or self.backbone == 'Resnet50':
         
     | 
| 124 | 
         
            +
                        out = list(out.values())
         
     | 
| 125 | 
         
            +
                    # FPN
         
     | 
| 126 | 
         
            +
                    fpn = self.fpn(out)
         
     | 
| 127 | 
         
            +
             
     | 
| 128 | 
         
            +
                    # SSH
         
     | 
| 129 | 
         
            +
                    feature1 = self.ssh1(fpn[0])
         
     | 
| 130 | 
         
            +
                    feature2 = self.ssh2(fpn[1])
         
     | 
| 131 | 
         
            +
                    feature3 = self.ssh3(fpn[2])
         
     | 
| 132 | 
         
            +
                    features = [feature1, feature2, feature3]
         
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
                    bbox_regressions = torch.cat([self.BboxHead[i](feature) for i, feature in enumerate(features)], dim=1)
         
     | 
| 135 | 
         
            +
                    classifications = torch.cat([self.ClassHead[i](feature) for i, feature in enumerate(features)], dim=1)
         
     | 
| 136 | 
         
            +
                    tmp = [self.LandmarkHead[i](feature) for i, feature in enumerate(features)]
         
     | 
| 137 | 
         
            +
                    ldm_regressions = (torch.cat(tmp, dim=1))
         
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
                    if self.phase == 'train':
         
     | 
| 140 | 
         
            +
                        output = (bbox_regressions, classifications, ldm_regressions)
         
     | 
| 141 | 
         
            +
                    else:
         
     | 
| 142 | 
         
            +
                        output = (bbox_regressions, F.softmax(classifications, dim=-1), ldm_regressions)
         
     | 
| 143 | 
         
            +
                    return output
         
     | 
| 144 | 
         
            +
             
     | 
| 145 | 
         
            +
                def __detect_faces(self, inputs):
         
     | 
| 146 | 
         
            +
                    # get scale
         
     | 
| 147 | 
         
            +
                    height, width = inputs.shape[2:]
         
     | 
| 148 | 
         
            +
                    self.scale = torch.tensor([width, height, width, height], dtype=torch.float32, device=self.device)
         
     | 
| 149 | 
         
            +
                    tmp = [width, height, width, height, width, height, width, height, width, height]
         
     | 
| 150 | 
         
            +
                    self.scale1 = torch.tensor(tmp, dtype=torch.float32, device=self.device)
         
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
                    # forawrd
         
     | 
| 153 | 
         
            +
                    inputs = inputs.to(self.device)
         
     | 
| 154 | 
         
            +
                    if self.half_inference:
         
     | 
| 155 | 
         
            +
                        inputs = inputs.half()
         
     | 
| 156 | 
         
            +
                    loc, conf, landmarks = self(inputs)
         
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
                    # get priorbox
         
     | 
| 159 | 
         
            +
                    priorbox = PriorBox(self.cfg, image_size=inputs.shape[2:])
         
     | 
| 160 | 
         
            +
                    priors = priorbox.forward().to(self.device)
         
     | 
| 161 | 
         
            +
             
     | 
| 162 | 
         
            +
                    return loc, conf, landmarks, priors
         
     | 
| 163 | 
         
            +
             
     | 
| 164 | 
         
            +
                # single image detection
         
     | 
| 165 | 
         
            +
                def transform(self, image, use_origin_size):
         
     | 
| 166 | 
         
            +
                    # convert to opencv format
         
     | 
| 167 | 
         
            +
                    if isinstance(image, Image.Image):
         
     | 
| 168 | 
         
            +
                        image = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
         
     | 
| 169 | 
         
            +
                    image = image.astype(np.float32)
         
     | 
| 170 | 
         
            +
             
     | 
| 171 | 
         
            +
                    # testing scale
         
     | 
| 172 | 
         
            +
                    im_size_min = np.min(image.shape[0:2])
         
     | 
| 173 | 
         
            +
                    im_size_max = np.max(image.shape[0:2])
         
     | 
| 174 | 
         
            +
                    resize = float(self.target_size) / float(im_size_min)
         
     | 
| 175 | 
         
            +
             
     | 
| 176 | 
         
            +
                    # prevent bigger axis from being more than max_size
         
     | 
| 177 | 
         
            +
                    if np.round(resize * im_size_max) > self.max_size:
         
     | 
| 178 | 
         
            +
                        resize = float(self.max_size) / float(im_size_max)
         
     | 
| 179 | 
         
            +
                    resize = 1 if use_origin_size else resize
         
     | 
| 180 | 
         
            +
             
     | 
| 181 | 
         
            +
                    # resize
         
     | 
| 182 | 
         
            +
                    if resize != 1:
         
     | 
| 183 | 
         
            +
                        image = cv2.resize(image, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR)
         
     | 
| 184 | 
         
            +
             
     | 
| 185 | 
         
            +
                    # convert to torch.tensor format
         
     | 
| 186 | 
         
            +
                    # image -= (104, 117, 123)
         
     | 
| 187 | 
         
            +
                    image = image.transpose(2, 0, 1)
         
     | 
| 188 | 
         
            +
                    image = torch.from_numpy(image).unsqueeze(0)
         
     | 
| 189 | 
         
            +
             
     | 
| 190 | 
         
            +
                    return image, resize
         
     | 
| 191 | 
         
            +
             
     | 
| 192 | 
         
            +
                def detect_faces(
         
     | 
| 193 | 
         
            +
                    self,
         
     | 
| 194 | 
         
            +
                    image,
         
     | 
| 195 | 
         
            +
                    conf_threshold=0.8,
         
     | 
| 196 | 
         
            +
                    nms_threshold=0.4,
         
     | 
| 197 | 
         
            +
                    use_origin_size=True,
         
     | 
| 198 | 
         
            +
                ):
         
     | 
| 199 | 
         
            +
                    image, self.resize = self.transform(image, use_origin_size)
         
     | 
| 200 | 
         
            +
                    image = image.to(self.device)
         
     | 
| 201 | 
         
            +
                    if self.half_inference:
         
     | 
| 202 | 
         
            +
                        image = image.half()
         
     | 
| 203 | 
         
            +
                    image = image - self.mean_tensor
         
     | 
| 204 | 
         
            +
             
     | 
| 205 | 
         
            +
                    loc, conf, landmarks, priors = self.__detect_faces(image)
         
     | 
| 206 | 
         
            +
             
     | 
| 207 | 
         
            +
                    boxes = decode(loc.data.squeeze(0), priors.data, self.cfg['variance'])
         
     | 
| 208 | 
         
            +
                    boxes = boxes * self.scale / self.resize
         
     | 
| 209 | 
         
            +
                    boxes = boxes.cpu().numpy()
         
     | 
| 210 | 
         
            +
             
     | 
| 211 | 
         
            +
                    scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
         
     | 
| 212 | 
         
            +
             
     | 
| 213 | 
         
            +
                    landmarks = decode_landm(landmarks.squeeze(0), priors, self.cfg['variance'])
         
     | 
| 214 | 
         
            +
                    landmarks = landmarks * self.scale1 / self.resize
         
     | 
| 215 | 
         
            +
                    landmarks = landmarks.cpu().numpy()
         
     | 
| 216 | 
         
            +
             
     | 
| 217 | 
         
            +
                    # ignore low scores
         
     | 
| 218 | 
         
            +
                    inds = np.where(scores > conf_threshold)[0]
         
     | 
| 219 | 
         
            +
                    boxes, landmarks, scores = boxes[inds], landmarks[inds], scores[inds]
         
     | 
| 220 | 
         
            +
             
     | 
| 221 | 
         
            +
                    # sort
         
     | 
| 222 | 
         
            +
                    order = scores.argsort()[::-1]
         
     | 
| 223 | 
         
            +
                    boxes, landmarks, scores = boxes[order], landmarks[order], scores[order]
         
     | 
| 224 | 
         
            +
             
     | 
| 225 | 
         
            +
                    # do NMS
         
     | 
| 226 | 
         
            +
                    bounding_boxes = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
         
     | 
| 227 | 
         
            +
                    keep = py_cpu_nms(bounding_boxes, nms_threshold)
         
     | 
| 228 | 
         
            +
                    bounding_boxes, landmarks = bounding_boxes[keep, :], landmarks[keep]
         
     | 
| 229 | 
         
            +
                    # self.t['forward_pass'].toc()
         
     | 
| 230 | 
         
            +
                    # print(self.t['forward_pass'].average_time)
         
     | 
| 231 | 
         
            +
                    # import sys
         
     | 
| 232 | 
         
            +
                    # sys.stdout.flush()
         
     | 
| 233 | 
         
            +
                    return np.concatenate((bounding_boxes, landmarks), axis=1)
         
     | 
| 234 | 
         
            +
             
     | 
| 235 | 
         
            +
                def __align_multi(self, image, boxes, landmarks, limit=None):
         
     | 
| 236 | 
         
            +
             
     | 
| 237 | 
         
            +
                    if len(boxes) < 1:
         
     | 
| 238 | 
         
            +
                        return [], []
         
     | 
| 239 | 
         
            +
             
     | 
| 240 | 
         
            +
                    if limit:
         
     | 
| 241 | 
         
            +
                        boxes = boxes[:limit]
         
     | 
| 242 | 
         
            +
                        landmarks = landmarks[:limit]
         
     | 
| 243 | 
         
            +
             
     | 
| 244 | 
         
            +
                    faces = []
         
     | 
| 245 | 
         
            +
                    for landmark in landmarks:
         
     | 
| 246 | 
         
            +
                        facial5points = [[landmark[2 * j], landmark[2 * j + 1]] for j in range(5)]
         
     | 
| 247 | 
         
            +
             
     | 
| 248 | 
         
            +
                        warped_face = warp_and_crop_face(np.array(image), facial5points, self.reference, crop_size=(112, 112))
         
     | 
| 249 | 
         
            +
                        faces.append(warped_face)
         
     | 
| 250 | 
         
            +
             
     | 
| 251 | 
         
            +
                    return np.concatenate((boxes, landmarks), axis=1), faces
         
     | 
| 252 | 
         
            +
             
     | 
| 253 | 
         
            +
                def align_multi(self, img, conf_threshold=0.8, limit=None):
         
     | 
| 254 | 
         
            +
             
     | 
| 255 | 
         
            +
                    rlt = self.detect_faces(img, conf_threshold=conf_threshold)
         
     | 
| 256 | 
         
            +
                    boxes, landmarks = rlt[:, 0:5], rlt[:, 5:]
         
     | 
| 257 | 
         
            +
             
     | 
| 258 | 
         
            +
                    return self.__align_multi(img, boxes, landmarks, limit)
         
     | 
| 259 | 
         
            +
             
     | 
| 260 | 
         
            +
                # batched detection
         
     | 
| 261 | 
         
            +
                def batched_transform(self, frames, use_origin_size):
         
     | 
| 262 | 
         
            +
                    """
         
     | 
| 263 | 
         
            +
                    Arguments:
         
     | 
| 264 | 
         
            +
                        frames: a list of PIL.Image, or torch.Tensor(shape=[n, h, w, c],
         
     | 
| 265 | 
         
            +
                            type=np.float32, BGR format).
         
     | 
| 266 | 
         
            +
                        use_origin_size: whether to use origin size.
         
     | 
| 267 | 
         
            +
                    """
         
     | 
| 268 | 
         
            +
                    from_PIL = True if isinstance(frames[0], Image.Image) else False
         
     | 
| 269 | 
         
            +
             
     | 
| 270 | 
         
            +
                    # convert to opencv format
         
     | 
| 271 | 
         
            +
                    if from_PIL:
         
     | 
| 272 | 
         
            +
                        frames = [cv2.cvtColor(np.asarray(frame), cv2.COLOR_RGB2BGR) for frame in frames]
         
     | 
| 273 | 
         
            +
                        frames = np.asarray(frames, dtype=np.float32)
         
     | 
| 274 | 
         
            +
             
     | 
| 275 | 
         
            +
                    # testing scale
         
     | 
| 276 | 
         
            +
                    im_size_min = np.min(frames[0].shape[0:2])
         
     | 
| 277 | 
         
            +
                    im_size_max = np.max(frames[0].shape[0:2])
         
     | 
| 278 | 
         
            +
                    resize = float(self.target_size) / float(im_size_min)
         
     | 
| 279 | 
         
            +
             
     | 
| 280 | 
         
            +
                    # prevent bigger axis from being more than max_size
         
     | 
| 281 | 
         
            +
                    if np.round(resize * im_size_max) > self.max_size:
         
     | 
| 282 | 
         
            +
                        resize = float(self.max_size) / float(im_size_max)
         
     | 
| 283 | 
         
            +
                    resize = 1 if use_origin_size else resize
         
     | 
| 284 | 
         
            +
             
     | 
| 285 | 
         
            +
                    # resize
         
     | 
| 286 | 
         
            +
                    if resize != 1:
         
     | 
| 287 | 
         
            +
                        if not from_PIL:
         
     | 
| 288 | 
         
            +
                            frames = F.interpolate(frames, scale_factor=resize)
         
     | 
| 289 | 
         
            +
                        else:
         
     | 
| 290 | 
         
            +
                            frames = [
         
     | 
| 291 | 
         
            +
                                cv2.resize(frame, None, None, fx=resize, fy=resize, interpolation=cv2.INTER_LINEAR)
         
     | 
| 292 | 
         
            +
                                for frame in frames
         
     | 
| 293 | 
         
            +
                            ]
         
     | 
| 294 | 
         
            +
             
     | 
| 295 | 
         
            +
                    # convert to torch.tensor format
         
     | 
| 296 | 
         
            +
                    if not from_PIL:
         
     | 
| 297 | 
         
            +
                        frames = frames.transpose(1, 2).transpose(1, 3).contiguous()
         
     | 
| 298 | 
         
            +
                    else:
         
     | 
| 299 | 
         
            +
                        frames = frames.transpose((0, 3, 1, 2))
         
     | 
| 300 | 
         
            +
                        frames = torch.from_numpy(frames)
         
     | 
| 301 | 
         
            +
             
     | 
| 302 | 
         
            +
                    return frames, resize
         
     | 
| 303 | 
         
            +
             
     | 
| 304 | 
         
            +
                def batched_detect_faces(self, frames, conf_threshold=0.8, nms_threshold=0.4, use_origin_size=True):
         
     | 
| 305 | 
         
            +
                    """
         
     | 
| 306 | 
         
            +
                    Arguments:
         
     | 
| 307 | 
         
            +
                        frames: a list of PIL.Image, or np.array(shape=[n, h, w, c],
         
     | 
| 308 | 
         
            +
                            type=np.uint8, BGR format).
         
     | 
| 309 | 
         
            +
                        conf_threshold: confidence threshold.
         
     | 
| 310 | 
         
            +
                        nms_threshold: nms threshold.
         
     | 
| 311 | 
         
            +
                        use_origin_size: whether to use origin size.
         
     | 
| 312 | 
         
            +
                    Returns:
         
     | 
| 313 | 
         
            +
                        final_bounding_boxes: list of np.array ([n_boxes, 5],
         
     | 
| 314 | 
         
            +
                            type=np.float32).
         
     | 
| 315 | 
         
            +
                        final_landmarks: list of np.array ([n_boxes, 10], type=np.float32).
         
     | 
| 316 | 
         
            +
                    """
         
     | 
| 317 | 
         
            +
                    # self.t['forward_pass'].tic()
         
     | 
| 318 | 
         
            +
                    frames, self.resize = self.batched_transform(frames, use_origin_size)
         
     | 
| 319 | 
         
            +
                    frames = frames.to(self.device)
         
     | 
| 320 | 
         
            +
                    frames = frames - self.mean_tensor
         
     | 
| 321 | 
         
            +
             
     | 
| 322 | 
         
            +
                    b_loc, b_conf, b_landmarks, priors = self.__detect_faces(frames)
         
     | 
| 323 | 
         
            +
             
     | 
| 324 | 
         
            +
                    final_bounding_boxes, final_landmarks = [], []
         
     | 
| 325 | 
         
            +
             
     | 
| 326 | 
         
            +
                    # decode
         
     | 
| 327 | 
         
            +
                    priors = priors.unsqueeze(0)
         
     | 
| 328 | 
         
            +
                    b_loc = batched_decode(b_loc, priors, self.cfg['variance']) * self.scale / self.resize
         
     | 
| 329 | 
         
            +
                    b_landmarks = batched_decode_landm(b_landmarks, priors, self.cfg['variance']) * self.scale1 / self.resize
         
     | 
| 330 | 
         
            +
                    b_conf = b_conf[:, :, 1]
         
     | 
| 331 | 
         
            +
             
     | 
| 332 | 
         
            +
                    # index for selection
         
     | 
| 333 | 
         
            +
                    b_indice = b_conf > conf_threshold
         
     | 
| 334 | 
         
            +
             
     | 
| 335 | 
         
            +
                    # concat
         
     | 
| 336 | 
         
            +
                    b_loc_and_conf = torch.cat((b_loc, b_conf.unsqueeze(-1)), dim=2).float()
         
     | 
| 337 | 
         
            +
             
     | 
| 338 | 
         
            +
                    for pred, landm, inds in zip(b_loc_and_conf, b_landmarks, b_indice):
         
     | 
| 339 | 
         
            +
             
     | 
| 340 | 
         
            +
                        # ignore low scores
         
     | 
| 341 | 
         
            +
                        pred, landm = pred[inds, :], landm[inds, :]
         
     | 
| 342 | 
         
            +
                        if pred.shape[0] == 0:
         
     | 
| 343 | 
         
            +
                            final_bounding_boxes.append(np.array([], dtype=np.float32))
         
     | 
| 344 | 
         
            +
                            final_landmarks.append(np.array([], dtype=np.float32))
         
     | 
| 345 | 
         
            +
                            continue
         
     | 
| 346 | 
         
            +
             
     | 
| 347 | 
         
            +
                        # sort
         
     | 
| 348 | 
         
            +
                        # order = score.argsort(descending=True)
         
     | 
| 349 | 
         
            +
                        # box, landm, score = box[order], landm[order], score[order]
         
     | 
| 350 | 
         
            +
             
     | 
| 351 | 
         
            +
                        # to CPU
         
     | 
| 352 | 
         
            +
                        bounding_boxes, landm = pred.cpu().numpy(), landm.cpu().numpy()
         
     | 
| 353 | 
         
            +
             
     | 
| 354 | 
         
            +
                        # NMS
         
     | 
| 355 | 
         
            +
                        keep = py_cpu_nms(bounding_boxes, nms_threshold)
         
     | 
| 356 | 
         
            +
                        bounding_boxes, landmarks = bounding_boxes[keep, :], landm[keep]
         
     | 
| 357 | 
         
            +
             
     | 
| 358 | 
         
            +
                        # append
         
     | 
| 359 | 
         
            +
                        final_bounding_boxes.append(bounding_boxes)
         
     | 
| 360 | 
         
            +
                        final_landmarks.append(landmarks)
         
     | 
| 361 | 
         
            +
                    # self.t['forward_pass'].toc(average=True)
         
     | 
| 362 | 
         
            +
                    # self.batch_time += self.t['forward_pass'].diff
         
     | 
| 363 | 
         
            +
                    # self.total_frame += len(frames)
         
     | 
| 364 | 
         
            +
                    # print(self.batch_time / self.total_frame)
         
     | 
| 365 | 
         
            +
             
     | 
| 366 | 
         
            +
                    return final_bounding_boxes, final_landmarks
         
     | 
    	
        extras/facexlib/detection/retinaface_net.py
    ADDED
    
    | 
         @@ -0,0 +1,196 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import torch.nn as nn
         
     | 
| 3 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            def conv_bn(inp, oup, stride=1, leaky=0):
         
     | 
| 7 | 
         
            +
                return nn.Sequential(
         
     | 
| 8 | 
         
            +
                    nn.Conv2d(inp, oup, 3, stride, 1, bias=False), nn.BatchNorm2d(oup),
         
     | 
| 9 | 
         
            +
                    nn.LeakyReLU(negative_slope=leaky, inplace=True))
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            def conv_bn_no_relu(inp, oup, stride):
         
     | 
| 13 | 
         
            +
                return nn.Sequential(
         
     | 
| 14 | 
         
            +
                    nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
         
     | 
| 15 | 
         
            +
                    nn.BatchNorm2d(oup),
         
     | 
| 16 | 
         
            +
                )
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            def conv_bn1X1(inp, oup, stride, leaky=0):
         
     | 
| 20 | 
         
            +
                return nn.Sequential(
         
     | 
| 21 | 
         
            +
                    nn.Conv2d(inp, oup, 1, stride, padding=0, bias=False), nn.BatchNorm2d(oup),
         
     | 
| 22 | 
         
            +
                    nn.LeakyReLU(negative_slope=leaky, inplace=True))
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
            def conv_dw(inp, oup, stride, leaky=0.1):
         
     | 
| 26 | 
         
            +
                return nn.Sequential(
         
     | 
| 27 | 
         
            +
                    nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),
         
     | 
| 28 | 
         
            +
                    nn.BatchNorm2d(inp),
         
     | 
| 29 | 
         
            +
                    nn.LeakyReLU(negative_slope=leaky, inplace=True),
         
     | 
| 30 | 
         
            +
                    nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
         
     | 
| 31 | 
         
            +
                    nn.BatchNorm2d(oup),
         
     | 
| 32 | 
         
            +
                    nn.LeakyReLU(negative_slope=leaky, inplace=True),
         
     | 
| 33 | 
         
            +
                )
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
            class SSH(nn.Module):
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
                def __init__(self, in_channel, out_channel):
         
     | 
| 39 | 
         
            +
                    super(SSH, self).__init__()
         
     | 
| 40 | 
         
            +
                    assert out_channel % 4 == 0
         
     | 
| 41 | 
         
            +
                    leaky = 0
         
     | 
| 42 | 
         
            +
                    if (out_channel <= 64):
         
     | 
| 43 | 
         
            +
                        leaky = 0.1
         
     | 
| 44 | 
         
            +
                    self.conv3X3 = conv_bn_no_relu(in_channel, out_channel // 2, stride=1)
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
                    self.conv5X5_1 = conv_bn(in_channel, out_channel // 4, stride=1, leaky=leaky)
         
     | 
| 47 | 
         
            +
                    self.conv5X5_2 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1)
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
                    self.conv7X7_2 = conv_bn(out_channel // 4, out_channel // 4, stride=1, leaky=leaky)
         
     | 
| 50 | 
         
            +
                    self.conv7x7_3 = conv_bn_no_relu(out_channel // 4, out_channel // 4, stride=1)
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                def forward(self, input):
         
     | 
| 53 | 
         
            +
                    conv3X3 = self.conv3X3(input)
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
                    conv5X5_1 = self.conv5X5_1(input)
         
     | 
| 56 | 
         
            +
                    conv5X5 = self.conv5X5_2(conv5X5_1)
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
                    conv7X7_2 = self.conv7X7_2(conv5X5_1)
         
     | 
| 59 | 
         
            +
                    conv7X7 = self.conv7x7_3(conv7X7_2)
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
                    out = torch.cat([conv3X3, conv5X5, conv7X7], dim=1)
         
     | 
| 62 | 
         
            +
                    out = F.relu(out)
         
     | 
| 63 | 
         
            +
                    return out
         
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
            class FPN(nn.Module):
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
                def __init__(self, in_channels_list, out_channels):
         
     | 
| 69 | 
         
            +
                    super(FPN, self).__init__()
         
     | 
| 70 | 
         
            +
                    leaky = 0
         
     | 
| 71 | 
         
            +
                    if (out_channels <= 64):
         
     | 
| 72 | 
         
            +
                        leaky = 0.1
         
     | 
| 73 | 
         
            +
                    self.output1 = conv_bn1X1(in_channels_list[0], out_channels, stride=1, leaky=leaky)
         
     | 
| 74 | 
         
            +
                    self.output2 = conv_bn1X1(in_channels_list[1], out_channels, stride=1, leaky=leaky)
         
     | 
| 75 | 
         
            +
                    self.output3 = conv_bn1X1(in_channels_list[2], out_channels, stride=1, leaky=leaky)
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
                    self.merge1 = conv_bn(out_channels, out_channels, leaky=leaky)
         
     | 
| 78 | 
         
            +
                    self.merge2 = conv_bn(out_channels, out_channels, leaky=leaky)
         
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
                def forward(self, input):
         
     | 
| 81 | 
         
            +
                    # names = list(input.keys())
         
     | 
| 82 | 
         
            +
                    # input = list(input.values())
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
                    output1 = self.output1(input[0])
         
     | 
| 85 | 
         
            +
                    output2 = self.output2(input[1])
         
     | 
| 86 | 
         
            +
                    output3 = self.output3(input[2])
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
                    up3 = F.interpolate(output3, size=[output2.size(2), output2.size(3)], mode='nearest')
         
     | 
| 89 | 
         
            +
                    output2 = output2 + up3
         
     | 
| 90 | 
         
            +
                    output2 = self.merge2(output2)
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
                    up2 = F.interpolate(output2, size=[output1.size(2), output1.size(3)], mode='nearest')
         
     | 
| 93 | 
         
            +
                    output1 = output1 + up2
         
     | 
| 94 | 
         
            +
                    output1 = self.merge1(output1)
         
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
                    out = [output1, output2, output3]
         
     | 
| 97 | 
         
            +
                    return out
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
            class MobileNetV1(nn.Module):
         
     | 
| 101 | 
         
            +
             
     | 
| 102 | 
         
            +
                def __init__(self):
         
     | 
| 103 | 
         
            +
                    super(MobileNetV1, self).__init__()
         
     | 
| 104 | 
         
            +
                    self.stage1 = nn.Sequential(
         
     | 
| 105 | 
         
            +
                        conv_bn(3, 8, 2, leaky=0.1),  # 3
         
     | 
| 106 | 
         
            +
                        conv_dw(8, 16, 1),  # 7
         
     | 
| 107 | 
         
            +
                        conv_dw(16, 32, 2),  # 11
         
     | 
| 108 | 
         
            +
                        conv_dw(32, 32, 1),  # 19
         
     | 
| 109 | 
         
            +
                        conv_dw(32, 64, 2),  # 27
         
     | 
| 110 | 
         
            +
                        conv_dw(64, 64, 1),  # 43
         
     | 
| 111 | 
         
            +
                    )
         
     | 
| 112 | 
         
            +
                    self.stage2 = nn.Sequential(
         
     | 
| 113 | 
         
            +
                        conv_dw(64, 128, 2),  # 43 + 16 = 59
         
     | 
| 114 | 
         
            +
                        conv_dw(128, 128, 1),  # 59 + 32 = 91
         
     | 
| 115 | 
         
            +
                        conv_dw(128, 128, 1),  # 91 + 32 = 123
         
     | 
| 116 | 
         
            +
                        conv_dw(128, 128, 1),  # 123 + 32 = 155
         
     | 
| 117 | 
         
            +
                        conv_dw(128, 128, 1),  # 155 + 32 = 187
         
     | 
| 118 | 
         
            +
                        conv_dw(128, 128, 1),  # 187 + 32 = 219
         
     | 
| 119 | 
         
            +
                    )
         
     | 
| 120 | 
         
            +
                    self.stage3 = nn.Sequential(
         
     | 
| 121 | 
         
            +
                        conv_dw(128, 256, 2),  # 219 +3 2 = 241
         
     | 
| 122 | 
         
            +
                        conv_dw(256, 256, 1),  # 241 + 64 = 301
         
     | 
| 123 | 
         
            +
                    )
         
     | 
| 124 | 
         
            +
                    self.avg = nn.AdaptiveAvgPool2d((1, 1))
         
     | 
| 125 | 
         
            +
                    self.fc = nn.Linear(256, 1000)
         
     | 
| 126 | 
         
            +
             
     | 
| 127 | 
         
            +
                def forward(self, x):
         
     | 
| 128 | 
         
            +
                    x = self.stage1(x)
         
     | 
| 129 | 
         
            +
                    x = self.stage2(x)
         
     | 
| 130 | 
         
            +
                    x = self.stage3(x)
         
     | 
| 131 | 
         
            +
                    x = self.avg(x)
         
     | 
| 132 | 
         
            +
                    # x = self.model(x)
         
     | 
| 133 | 
         
            +
                    x = x.view(-1, 256)
         
     | 
| 134 | 
         
            +
                    x = self.fc(x)
         
     | 
| 135 | 
         
            +
                    return x
         
     | 
| 136 | 
         
            +
             
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
            class ClassHead(nn.Module):
         
     | 
| 139 | 
         
            +
             
     | 
| 140 | 
         
            +
                def __init__(self, inchannels=512, num_anchors=3):
         
     | 
| 141 | 
         
            +
                    super(ClassHead, self).__init__()
         
     | 
| 142 | 
         
            +
                    self.num_anchors = num_anchors
         
     | 
| 143 | 
         
            +
                    self.conv1x1 = nn.Conv2d(inchannels, self.num_anchors * 2, kernel_size=(1, 1), stride=1, padding=0)
         
     | 
| 144 | 
         
            +
             
     | 
| 145 | 
         
            +
                def forward(self, x):
         
     | 
| 146 | 
         
            +
                    out = self.conv1x1(x)
         
     | 
| 147 | 
         
            +
                    out = out.permute(0, 2, 3, 1).contiguous()
         
     | 
| 148 | 
         
            +
             
     | 
| 149 | 
         
            +
                    return out.view(out.shape[0], -1, 2)
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
            class BboxHead(nn.Module):
         
     | 
| 153 | 
         
            +
             
     | 
| 154 | 
         
            +
                def __init__(self, inchannels=512, num_anchors=3):
         
     | 
| 155 | 
         
            +
                    super(BboxHead, self).__init__()
         
     | 
| 156 | 
         
            +
                    self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 4, kernel_size=(1, 1), stride=1, padding=0)
         
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
                def forward(self, x):
         
     | 
| 159 | 
         
            +
                    out = self.conv1x1(x)
         
     | 
| 160 | 
         
            +
                    out = out.permute(0, 2, 3, 1).contiguous()
         
     | 
| 161 | 
         
            +
             
     | 
| 162 | 
         
            +
                    return out.view(out.shape[0], -1, 4)
         
     | 
| 163 | 
         
            +
             
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
            class LandmarkHead(nn.Module):
         
     | 
| 166 | 
         
            +
             
     | 
| 167 | 
         
            +
                def __init__(self, inchannels=512, num_anchors=3):
         
     | 
| 168 | 
         
            +
                    super(LandmarkHead, self).__init__()
         
     | 
| 169 | 
         
            +
                    self.conv1x1 = nn.Conv2d(inchannels, num_anchors * 10, kernel_size=(1, 1), stride=1, padding=0)
         
     | 
| 170 | 
         
            +
             
     | 
| 171 | 
         
            +
                def forward(self, x):
         
     | 
| 172 | 
         
            +
                    out = self.conv1x1(x)
         
     | 
| 173 | 
         
            +
                    out = out.permute(0, 2, 3, 1).contiguous()
         
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
                    return out.view(out.shape[0], -1, 10)
         
     | 
| 176 | 
         
            +
             
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
            def make_class_head(fpn_num=3, inchannels=64, anchor_num=2):
         
     | 
| 179 | 
         
            +
                classhead = nn.ModuleList()
         
     | 
| 180 | 
         
            +
                for i in range(fpn_num):
         
     | 
| 181 | 
         
            +
                    classhead.append(ClassHead(inchannels, anchor_num))
         
     | 
| 182 | 
         
            +
                return classhead
         
     | 
| 183 | 
         
            +
             
     | 
| 184 | 
         
            +
             
     | 
| 185 | 
         
            +
            def make_bbox_head(fpn_num=3, inchannels=64, anchor_num=2):
         
     | 
| 186 | 
         
            +
                bboxhead = nn.ModuleList()
         
     | 
| 187 | 
         
            +
                for i in range(fpn_num):
         
     | 
| 188 | 
         
            +
                    bboxhead.append(BboxHead(inchannels, anchor_num))
         
     | 
| 189 | 
         
            +
                return bboxhead
         
     | 
| 190 | 
         
            +
             
     | 
| 191 | 
         
            +
             
     | 
| 192 | 
         
            +
            def make_landmark_head(fpn_num=3, inchannels=64, anchor_num=2):
         
     | 
| 193 | 
         
            +
                landmarkhead = nn.ModuleList()
         
     | 
| 194 | 
         
            +
                for i in range(fpn_num):
         
     | 
| 195 | 
         
            +
                    landmarkhead.append(LandmarkHead(inchannels, anchor_num))
         
     | 
| 196 | 
         
            +
                return landmarkhead
         
     |