thanhpham0704 commited on
Commit
2c4b129
·
1 Parent(s): b7ae033

Update Homepage.py

Browse files
Files changed (1) hide show
  1. Homepage.py +11 -11
Homepage.py CHANGED
@@ -76,7 +76,7 @@ if authentication_status:
76
  ketoan_end_time = col2.date_input(
77
  "Select end date", value=DEFAULT_END_DATE)
78
  submit_button = st.form_submit_button(
79
- label='Filter', use_container_width=True)
80
 
81
  # the duration between 2 dates exclude Sunday
82
  duration = sum(1 for i in range((ketoan_end_time - ketoan_start_time).days)
@@ -89,17 +89,17 @@ if authentication_status:
89
  days_excluding_sundays = days_in_month - sundays_in_month
90
  #----------------------#
91
 
92
- @st.cache_data(ttl=timedelta(days=1))
93
  def collect_data(link):
94
  return(pd.DataFrame((requests.get(link).json())))
95
 
96
- @st.cache_data()
97
  def rename_lop(dataframe, column_name):
98
  dataframe[column_name] = dataframe[column_name].replace(
99
  {1: "Hoa Cúc", 2: "Gò Dầu", 3: "Lê Quang Định", 5: "Lê Hồng Phong"})
100
  return dataframe
101
 
102
- @st.cache_data()
103
  def grand_total(dataframe, column):
104
  # create a new row with the sum of each numerical column
105
  totals = dataframe.select_dtypes(include=[float, int]).sum()
@@ -171,7 +171,7 @@ if authentication_status:
171
  ca6 = pd.to_datetime('2000-01-01 19:30:00').time()
172
  # Create a function that takes a time and returns "Morning" or "Evening" depending on whether the time falls within the specified range
173
 
174
- @st.cache_data()
175
  def time_of_day(time):
176
  if (time >= start_time) & (time < end_time):
177
  return "Sáng"
@@ -179,7 +179,7 @@ if authentication_status:
179
  return "Tối"
180
  # Create a function that takes a time and returns "Morning" or "Evening" depending on whether the time falls within the specified range
181
 
182
- @st.cache_data()
183
  def day_of_week(day):
184
  if (day == 5) | (day == 6):
185
  return "weekend"
@@ -187,7 +187,7 @@ if authentication_status:
187
  return "weekdays"
188
  # Create a function that takes a time and returns "Morning" or "Evening" depending on whether the time falls within the specified range
189
 
190
- @st.cache_data()
191
  def cahoc_converter(ca):
192
  if (ca >= ca1) & (ca < ca2):
193
  return 1
@@ -369,14 +369,14 @@ if authentication_status:
369
  # "------------------"
370
 
371
  # Define a function
372
- @st.cache_data(ttl=timedelta(days=365))
373
  def csv_reader(file):
374
  df = pd.read_csv(file)
375
  df = df.query("phanloai == 1") # Filter lop chính
376
  df['date_created'] = pd.to_datetime(df['date_created'])
377
  return df
378
 
379
- @st.cache_data(ttl=timedelta(days=1))
380
  def collect_filtered_data(table, date_column='', start_time='', end_time=''):
381
  link = f"https://vietop.tech/api/get_data/{table}?column={date_column}&date_start={start_time}&date_end={end_time}"
382
  df = pd.DataFrame((requests.get(link).json()))
@@ -425,7 +425,7 @@ if authentication_status:
425
  ['id', 'fullname', 'lop_cn'], as_index=False)['thucthu'].sum()
426
  # "_______________"
427
 
428
- @st.cache_data()
429
  def thucthu_time(dataframe, column):
430
  df = dataframe.groupby(['lop_cn', column], as_index=False)[
431
  'thucthu'].sum()
@@ -656,7 +656,7 @@ if authentication_status:
656
  lambda x: '{:.2%}'.format(x/100))
657
 
658
  # define a function
659
- @ st.cache_data()
660
  def thousands_divider(df, col):
661
  df[col] = df[col].apply(
662
  lambda x: '{:,.0f}'.format(x))
 
76
  ketoan_end_time = col2.date_input(
77
  "Select end date", value=DEFAULT_END_DATE)
78
  submit_button = st.form_submit_button(
79
+ label='Filter')
80
 
81
  # the duration between 2 dates exclude Sunday
82
  duration = sum(1 for i in range((ketoan_end_time - ketoan_start_time).days)
 
89
  days_excluding_sundays = days_in_month - sundays_in_month
90
  #----------------------#
91
 
92
+ @st.cache
93
  def collect_data(link):
94
  return(pd.DataFrame((requests.get(link).json())))
95
 
96
+ @st.cache
97
  def rename_lop(dataframe, column_name):
98
  dataframe[column_name] = dataframe[column_name].replace(
99
  {1: "Hoa Cúc", 2: "Gò Dầu", 3: "Lê Quang Định", 5: "Lê Hồng Phong"})
100
  return dataframe
101
 
102
+ @st.cache
103
  def grand_total(dataframe, column):
104
  # create a new row with the sum of each numerical column
105
  totals = dataframe.select_dtypes(include=[float, int]).sum()
 
171
  ca6 = pd.to_datetime('2000-01-01 19:30:00').time()
172
  # Create a function that takes a time and returns "Morning" or "Evening" depending on whether the time falls within the specified range
173
 
174
+ @st.cache
175
  def time_of_day(time):
176
  if (time >= start_time) & (time < end_time):
177
  return "Sáng"
 
179
  return "Tối"
180
  # Create a function that takes a time and returns "Morning" or "Evening" depending on whether the time falls within the specified range
181
 
182
+ @st.cache
183
  def day_of_week(day):
184
  if (day == 5) | (day == 6):
185
  return "weekend"
 
187
  return "weekdays"
188
  # Create a function that takes a time and returns "Morning" or "Evening" depending on whether the time falls within the specified range
189
 
190
+ @st.cache
191
  def cahoc_converter(ca):
192
  if (ca >= ca1) & (ca < ca2):
193
  return 1
 
369
  # "------------------"
370
 
371
  # Define a function
372
+ @st.cache
373
  def csv_reader(file):
374
  df = pd.read_csv(file)
375
  df = df.query("phanloai == 1") # Filter lop chính
376
  df['date_created'] = pd.to_datetime(df['date_created'])
377
  return df
378
 
379
+ @st.cache
380
  def collect_filtered_data(table, date_column='', start_time='', end_time=''):
381
  link = f"https://vietop.tech/api/get_data/{table}?column={date_column}&date_start={start_time}&date_end={end_time}"
382
  df = pd.DataFrame((requests.get(link).json()))
 
425
  ['id', 'fullname', 'lop_cn'], as_index=False)['thucthu'].sum()
426
  # "_______________"
427
 
428
+ @st.cache
429
  def thucthu_time(dataframe, column):
430
  df = dataframe.groupby(['lop_cn', column], as_index=False)[
431
  'thucthu'].sum()
 
656
  lambda x: '{:.2%}'.format(x/100))
657
 
658
  # define a function
659
+ @ st.cache
660
  def thousands_divider(df, col):
661
  df[col] = df[col].apply(
662
  lambda x: '{:,.0f}'.format(x))