Spaces:
Build error
Build error
| import os | |
| from langchain_groq import ChatGroq | |
| from langchain_core.prompts import PromptTemplate | |
| from langchain_core.output_parsers import JsonOutputParser | |
| from langchain_core.exceptions import OutputParserException | |
| from dotenv import load_dotenv | |
| load_dotenv() | |
| class Chain: | |
| def __init__(self): | |
| self.llm = ChatGroq(temperature=0, groq_api_key=os.getenv("GROQ_API_KEY"), model_name="llama-3.3-70b-versatile") | |
| def extract_jobs(self, cleaned_text): | |
| prompt_extract = PromptTemplate.from_template( | |
| """ | |
| ### SCRAPED TEXT FROM WEBSITE: | |
| {page_data} | |
| ### INSTRUCTION: | |
| The scraped text is from the career's page of a website. | |
| Your job is to extract the job postings and return them in JSON format containing the following keys: `role`, `experience`, `skills`, and `description`. | |
| Only return the valid JSON. | |
| ### VALID JSON (NO PREAMBLE): | |
| """ | |
| ) | |
| chain_extract = prompt_extract | self.llm | |
| res = chain_extract.invoke(input={"page_data": cleaned_text}) | |
| try: | |
| json_parser = JsonOutputParser() | |
| res = json_parser.parse(res.content) | |
| except OutputParserException: | |
| raise OutputParserException("Context too big. Unable to parse jobs.") | |
| return res if isinstance(res, list) else [res] | |
| def write_mail(self, job, links, username="Thamani", client_name="Hiring Manager", email_style="Formal"): | |
| """Generates cold emails based on the selected style.""" | |
| style_instructions = { | |
| "Formal": "Maintain a professional and polished tone. Focus on achievements and qualifications.", | |
| "Casual": "Use a friendly, engaging tone. Keep it light while still showcasing strengths.", | |
| "Persuasive": "Be compelling and assertive. Highlight why you are the perfect fit with strong language." | |
| } | |
| # Convert style name to lowercase for prompt clarity | |
| email_style_lower = email_style.lower() | |
| prompt_email = PromptTemplate.from_template( | |
| """ | |
| ### JOB DETAILS: | |
| - Role: {job_title} | |
| - Company: {company_name} | |
| - Experience Required: {experience} | |
| - Skills: {skills} | |
| - Description: {job_description} | |
| ### INSTRUCTION: | |
| You are {username}, a motivated MCA graduate with strong technical and analytical skills, seeking an opportunity to contribute to {company_name} as a {job_title}. | |
| Craft a **{email_style} cold email** to {client_name} demonstrating your skills, projects, and value. | |
| Style Instruction: {style_instruction} | |
| Highlight relevant projects, certifications, or portfolio links: {link_list}. | |
| ### EMAIL (NO PREAMBLE): | |
| """ | |
| ) | |
| chain_email = prompt_email | self.llm | |
| # Extract job details, handling missing fields | |
| job_title = job.get("role", "the position") | |
| company_name = job.get("company", "the company") | |
| experience = job.get("experience", "not specified") | |
| skills = ", ".join(job.get("skills", [])) or "not mentioned" | |
| job_description = job.get("description", "No description provided.") | |
| # Filter out empty links | |
| valid_links = [link for link in links if link] | |
| formatted_links = "\n".join(f"- {link}" for link in valid_links) if valid_links else "No portfolio links provided." | |
| # Generate email | |
| res = chain_email.invoke({ | |
| "job_title": job_title, | |
| "company_name": company_name, | |
| "experience": experience, | |
| "skills": skills, | |
| "job_description": job_description, | |
| "link_list": formatted_links, | |
| "username": username, | |
| "client_name": client_name, | |
| "email_style": email_style_lower, # Fixed Issue | |
| "style_instruction": style_instructions[email_style] | |
| }) | |
| return res.content | |
| if __name__ == "__main__": | |
| print(os.getenv("GROQ_API_KEY")) |