Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,11 +5,6 @@ import os
|
|
| 5 |
|
| 6 |
openai.api_key = os.environ["OPENAI_API_KEY"]
|
| 7 |
|
| 8 |
-
#openai.api_key = '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'
|
| 9 |
-
|
| 10 |
-
import whisper
|
| 11 |
-
import gradio as gr
|
| 12 |
-
|
| 13 |
model = whisper.load_model("small")
|
| 14 |
|
| 15 |
def transcribe(audio):
|
|
@@ -38,7 +33,29 @@ def process_text(input_text):
|
|
| 38 |
return output_text
|
| 39 |
|
| 40 |
def get_completion(prompt, model='gpt-3.5-turbo'):
|
| 41 |
-
messages = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
response = openai.ChatCompletion.create(
|
| 43 |
model = model,
|
| 44 |
messages = messages,
|
|
@@ -59,30 +76,16 @@ with demo:
|
|
| 59 |
text1 = gr.Textbox()
|
| 60 |
text2 = gr.Textbox()
|
| 61 |
|
| 62 |
-
prompt =
|
| 63 |
-
You are a world class nurse practitioner. You are provided with the transcription. \
|
| 64 |
-
Summarize the text and put it in a table format with rows as follows: \
|
| 65 |
-
|
| 66 |
-
1. Patient identification:
|
| 67 |
-
2. Chief complaint:
|
| 68 |
-
3. Medical history:
|
| 69 |
-
4. Family history:
|
| 70 |
-
5. Social history:
|
| 71 |
-
6. Review of systems:
|
| 72 |
-
7. Current medications:
|
| 73 |
-
8. Vaccination status:
|
| 74 |
-
9. Emotional well-being:
|
| 75 |
-
10. Patient concerns and expectations:
|
| 76 |
|
| 77 |
|
| 78 |
-
"""
|
| 79 |
|
| 80 |
b1.click(transcribe, inputs=audio, outputs=text1)
|
| 81 |
b2.click(get_completion, inputs=text1, outputs=text2)
|
| 82 |
|
| 83 |
|
| 84 |
# b1.click(transcribe, inputs=audio, outputs=text1)
|
| 85 |
-
# b2.click(get_completion, inputs=
|
| 86 |
|
| 87 |
|
| 88 |
|
|
|
|
| 5 |
|
| 6 |
openai.api_key = os.environ["OPENAI_API_KEY"]
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
model = whisper.load_model("small")
|
| 9 |
|
| 10 |
def transcribe(audio):
|
|
|
|
| 33 |
return output_text
|
| 34 |
|
| 35 |
def get_completion(prompt, model='gpt-3.5-turbo'):
|
| 36 |
+
messages = [
|
| 37 |
+
{"role": "system", "content": """You are a world class nurse practitioner. You are provided with the transcription. \
|
| 38 |
+
Summarize the text and put it in a table format with rows as follows: \
|
| 39 |
+
|
| 40 |
+
Date of Alert
|
| 41 |
+
Claimant
|
| 42 |
+
Client/Employer
|
| 43 |
+
Claim #
|
| 44 |
+
DOI (Date of Injury)
|
| 45 |
+
Date of Visit
|
| 46 |
+
Provider
|
| 47 |
+
Diagnosis Treated
|
| 48 |
+
Subjective findings
|
| 49 |
+
Objective Findings
|
| 50 |
+
Treatment plan
|
| 51 |
+
Medications
|
| 52 |
+
RTW (Return to Work) Status
|
| 53 |
+
Restrictions
|
| 54 |
+
NOV (Next Office Visit)
|
| 55 |
+
"""
|
| 56 |
+
},
|
| 57 |
+
{"role": "user", "content": prompt}
|
| 58 |
+
]
|
| 59 |
response = openai.ChatCompletion.create(
|
| 60 |
model = model,
|
| 61 |
messages = messages,
|
|
|
|
| 76 |
text1 = gr.Textbox()
|
| 77 |
text2 = gr.Textbox()
|
| 78 |
|
| 79 |
+
prompt = text1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
|
|
|
|
| 82 |
|
| 83 |
b1.click(transcribe, inputs=audio, outputs=text1)
|
| 84 |
b2.click(get_completion, inputs=text1, outputs=text2)
|
| 85 |
|
| 86 |
|
| 87 |
# b1.click(transcribe, inputs=audio, outputs=text1)
|
| 88 |
+
# b2.click(get_completion, inputs=prompt, outputs=text2)
|
| 89 |
|
| 90 |
|
| 91 |
|