tetrisd's picture
Add example
31ccd79
raw
history blame
4.61 kB
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from typing import Optional, Tuple, Union
import torch
from ...models import UNet2DModel
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from ...schedulers import PNDMScheduler
class PNDMPipeline(DiffusionPipeline):
r"""
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Parameters:
unet (`UNet2DModel`): U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
The `PNDMScheduler` to be used in combination with `unet` to denoise the encoded image.
"""
unet: UNet2DModel
scheduler: PNDMScheduler
def __init__(self, unet: UNet2DModel, scheduler: PNDMScheduler):
super().__init__()
scheduler = scheduler.set_format("pt")
self.register_modules(unet=unet, scheduler=scheduler)
@torch.no_grad()
def __call__(
self,
batch_size: int = 1,
num_inference_steps: int = 50,
generator: Optional[torch.Generator] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
**kwargs,
) -> Union[ImagePipelineOutput, Tuple]:
r"""
Args:
batch_size (`int`, `optional`, defaults to 1): The number of images to generate.
num_inference_steps (`int`, `optional`, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
generator (`torch.Generator`, `optional`): A [torch
generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
output_type (`str`, `optional`, defaults to `"pil"`): The output format of the generate image. Choose
between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `nd.array`.
return_dict (`bool`, `optional`, defaults to `True`): Whether or not to return a
[`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
Returns:
[`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
`return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
generated images.
"""
# For more information on the sampling method you can take a look at Algorithm 2 of
# the official paper: https://arxiv.org/pdf/2202.09778.pdf
if "torch_device" in kwargs:
device = kwargs.pop("torch_device")
warnings.warn(
"`torch_device` is deprecated as an input argument to `__call__` and will be removed in v0.3.0."
" Consider using `pipe.to(torch_device)` instead."
)
# Set device as before (to be removed in 0.3.0)
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
self.to(device)
# Sample gaussian noise to begin loop
image = torch.randn(
(batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size),
generator=generator,
)
image = image.to(self.device)
self.scheduler.set_timesteps(num_inference_steps)
for t in self.progress_bar(self.scheduler.timesteps):
model_output = self.unet(image, t).sample
image = self.scheduler.step(model_output, t, image).prev_sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)