Spaces:
Runtime error
Runtime error
Diffusion-Attentive-Attribution-Maps
/
diffusers
/pipelines
/latent_diffusion_uncond
/pipeline_latent_diffusion_uncond.py
import inspect | |
import warnings | |
from typing import Optional, Tuple, Union | |
import torch | |
from ...models import UNet2DModel, VQModel | |
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
from ...schedulers import DDIMScheduler | |
class LDMPipeline(DiffusionPipeline): | |
r""" | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
Parameters: | |
vqvae ([`VQModel`]): | |
Vector-quantized (VQ) Model to encode and decode images to and from latent representations. | |
unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image latents. | |
scheduler ([`SchedulerMixin`]): | |
[`DDIMScheduler`] is to be used in combination with `unet` to denoise the encoded image latens. | |
""" | |
def __init__(self, vqvae: VQModel, unet: UNet2DModel, scheduler: DDIMScheduler): | |
super().__init__() | |
scheduler = scheduler.set_format("pt") | |
self.register_modules(vqvae=vqvae, unet=unet, scheduler=scheduler) | |
def __call__( | |
self, | |
batch_size: int = 1, | |
generator: Optional[torch.Generator] = None, | |
eta: float = 0.0, | |
num_inference_steps: int = 50, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
**kwargs, | |
) -> Union[Tuple, ImagePipelineOutput]: | |
r""" | |
Args: | |
batch_size (`int`, *optional*, defaults to 1): | |
Number of images to generate. | |
generator (`torch.Generator`, *optional*): | |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation | |
deterministic. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `nd.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple. | |
Returns: | |
[`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if | |
`return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the | |
generated images. | |
""" | |
if "torch_device" in kwargs: | |
device = kwargs.pop("torch_device") | |
warnings.warn( | |
"`torch_device` is deprecated as an input argument to `__call__` and will be removed in v0.3.0." | |
" Consider using `pipe.to(torch_device)` instead." | |
) | |
# Set device as before (to be removed in 0.3.0) | |
if device is None: | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
self.to(device) | |
latents = torch.randn( | |
(batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size), | |
generator=generator, | |
) | |
latents = latents.to(self.device) | |
self.scheduler.set_timesteps(num_inference_steps) | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_kwargs = {} | |
if accepts_eta: | |
extra_kwargs["eta"] = eta | |
for t in self.progress_bar(self.scheduler.timesteps): | |
# predict the noise residual | |
noise_prediction = self.unet(latents, t).sample | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step(noise_prediction, t, latents, **extra_kwargs).prev_sample | |
# decode the image latents with the VAE | |
image = self.vqvae.decode(latents).sample | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.cpu().permute(0, 2, 3, 1).numpy() | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
if not return_dict: | |
return (image,) | |
return ImagePipelineOutput(images=image) | |