Spaces:
Runtime error
Runtime error
import warnings | |
warnings.filterwarnings('ignore') | |
import librosa | |
import numpy as np | |
from PIL import Image | |
class Mel: | |
def __init__( | |
self, | |
x_res=256, | |
y_res=256, | |
sample_rate=22050, | |
n_fft=2048, | |
hop_length=512, | |
top_db=80, | |
): | |
self.x_res = x_res | |
self.y_res = y_res | |
self.sr = sample_rate | |
self.n_fft = n_fft | |
self.hop_length = hop_length | |
self.n_mels = self.y_res | |
self.slice_size = self.x_res * self.hop_length - 1 | |
self.fmax = self.sr / 2 | |
self.top_db = top_db | |
self.y = None | |
def load_audio(self, audio_file): | |
self.y, _ = librosa.load(audio_file, mono=True) | |
def get_number_of_slices(self): | |
return len(self.y) // self.slice_size | |
def get_sample_rate(self): | |
return self.sr | |
def audio_slice_to_image(self, slice): | |
S = librosa.feature.melspectrogram( | |
y=self.y[self.slice_size * slice : self.slice_size * (slice + 1)], | |
sr=self.sr, | |
n_fft=self.n_fft, | |
hop_length=self.hop_length, | |
n_mels=self.n_mels, | |
fmax=self.fmax, | |
) | |
log_S = librosa.power_to_db(S, ref=np.max, top_db=self.top_db) | |
bytedata = ( | |
((log_S + self.top_db) * 255 / self.top_db).clip(0, 255) + 0.5 | |
).astype(np.uint8) | |
image = Image.frombytes("L", log_S.shape, bytedata.tobytes()) | |
return image | |
def image_to_audio(self, image): | |
bytedata = np.frombuffer(image.tobytes(), dtype="uint8").reshape( | |
(image.width, image.height) | |
) | |
log_S = bytedata.astype("float") * self.top_db / 255 - self.top_db | |
S = librosa.db_to_power(log_S) | |
audio = librosa.feature.inverse.mel_to_audio( | |
S, sr=self.sr, n_fft=self.n_fft, hop_length=self.hop_length | |
) | |
return audio | |