teticio's picture
fix imports
30b435a
raw
history blame
5.67 kB
# This code has been migrated to diffusers but can be run locally with
# pipe = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-256", custom_pipeline="audio-diffusion/audiodiffusion/pipeline_audio_diffusion.py")
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.schedulers.scheduling_utils import SchedulerMixin
warnings.filterwarnings("ignore")
import numpy as np # noqa: E402
try:
import librosa # noqa: E402
_librosa_can_be_imported = True
_import_error = ""
except Exception as e:
_librosa_can_be_imported = False
_import_error = (
f"Cannot import librosa because {e}. Make sure to correctly install librosa to be able to install it."
)
from PIL import Image # noqa: E402
class Mel(ConfigMixin, SchedulerMixin):
"""
Parameters:
x_res (`int`): x resolution of spectrogram (time)
y_res (`int`): y resolution of spectrogram (frequency bins)
sample_rate (`int`): sample rate of audio
n_fft (`int`): number of Fast Fourier Transforms
hop_length (`int`): hop length (a higher number is recommended for lower than 256 y_res)
top_db (`int`): loudest in decibels
n_iter (`int`): number of iterations for Griffin Linn mel inversion
"""
config_name = "mel_config.json"
@register_to_config
def __init__(
self,
x_res: int = 256,
y_res: int = 256,
sample_rate: int = 22050,
n_fft: int = 2048,
hop_length: int = 512,
top_db: int = 80,
n_iter: int = 32,
):
self.hop_length = hop_length
self.sr = sample_rate
self.n_fft = n_fft
self.top_db = top_db
self.n_iter = n_iter
self.set_resolution(x_res, y_res)
self.audio = None
if not _librosa_can_be_imported:
raise ValueError(_import_error)
def set_resolution(self, x_res: int, y_res: int):
"""Set resolution.
Args:
x_res (`int`): x resolution of spectrogram (time)
y_res (`int`): y resolution of spectrogram (frequency bins)
"""
self.x_res = x_res
self.y_res = y_res
self.n_mels = self.y_res
self.slice_size = self.x_res * self.hop_length - 1
def load_audio(self, audio_file: str = None, raw_audio: np.ndarray = None):
"""Load audio.
Args:
audio_file (`str`): must be a file on disk due to Librosa limitation or
raw_audio (`np.ndarray`): audio as numpy array
"""
if audio_file is not None:
self.audio, _ = librosa.load(audio_file, mono=True, sr=self.sr)
else:
self.audio = raw_audio
# Pad with silence if necessary.
if len(self.audio) < self.x_res * self.hop_length:
self.audio = np.concatenate([self.audio, np.zeros((self.x_res * self.hop_length - len(self.audio),))])
def get_number_of_slices(self) -> int:
"""Get number of slices in audio.
Returns:
`int`: number of spectograms audio can be sliced into
"""
return len(self.audio) // self.slice_size
def get_audio_slice(self, slice: int = 0) -> np.ndarray:
"""Get slice of audio.
Args:
slice (`int`): slice number of audio (out of get_number_of_slices())
Returns:
`np.ndarray`: audio as numpy array
"""
return self.audio[self.slice_size * slice : self.slice_size * (slice + 1)]
def get_sample_rate(self) -> int:
"""Get sample rate:
Returns:
`int`: sample rate of audio
"""
return self.sr
def audio_slice_to_image(self, slice: int) -> Image.Image:
"""Convert slice of audio to spectrogram.
Args:
slice (`int`): slice number of audio to convert (out of get_number_of_slices())
Returns:
`PIL Image`: grayscale image of x_res x y_res
"""
S = librosa.feature.melspectrogram(
y=self.get_audio_slice(slice), sr=self.sr, n_fft=self.n_fft, hop_length=self.hop_length, n_mels=self.n_mels
)
log_S = librosa.power_to_db(S, ref=np.max, top_db=self.top_db)
bytedata = (((log_S + self.top_db) * 255 / self.top_db).clip(0, 255) + 0.5).astype(np.uint8)
image = Image.fromarray(bytedata)
return image
def image_to_audio(self, image: Image.Image) -> np.ndarray:
"""Converts spectrogram to audio.
Args:
image (`PIL Image`): x_res x y_res grayscale image
Returns:
audio (`np.ndarray`): raw audio
"""
bytedata = np.frombuffer(image.tobytes(), dtype="uint8").reshape((image.height, image.width))
log_S = bytedata.astype("float") * self.top_db / 255 - self.top_db
S = librosa.db_to_power(log_S)
audio = librosa.feature.inverse.mel_to_audio(
S, sr=self.sr, n_fft=self.n_fft, hop_length=self.hop_length, n_iter=self.n_iter
)
return audio