testmail-gmail's picture
Update app.py
14ff274
import os
import cv2
import time
import torch
import argparse
import gradio as gr
import io
from PIL import Image
from numpy import random
from pathlib import Path
import torch.backends.cudnn as cudnn
from models.experimental import attempt_load
import keras_ocr
import matplotlib.pyplot as plt
from numpy import asarray
import pytesseract
from datetime import date
from utils.datasets import LoadStreams, LoadImages
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
from utils.plots import plot_one_box
from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt")
os.system("wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt")
def detect_Custom(img):
model='passport_mrz' # Naming Convention for yolov7 See output file of https://www.kaggle.com/code/owaiskhan9654/training-yolov7-on-kaggle-on-custom-dataset/data
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default=model+".pt", help='model.pt path(s)')
parser.add_argument('--source', type=str, default='Inference/', help='source')
parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.45, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='display results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default='runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--trace', action='store_true', help='trace model')
opt = parser.parse_args()
img.save("Inference/test.jpg")
source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, opt.trace
save_img = True
webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
('rtsp://', 'rtmp://', 'http://', 'https://'))
save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)
set_logging()
device = select_device(opt.device)
half = device.type != 'cpu'
model = attempt_load(weights, map_location=device)
stride = int(model.stride.max())
imgsz = check_img_size(imgsz, s=stride)
if trace:
model = TracedModel(model, device, opt.img_size)
if half:
model.half()
classify = False
if classify:
modelc = load_classifier(name='resnet101', n=2)
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
vid_path, vid_writer = None, None
if webcam:
view_img = check_imshow()
cudnn.benchmark = True
dataset = LoadStreams(source, img_size=imgsz, stride=stride)
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride)
names = model.module.names if hasattr(model, 'module') else model.names
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
if device.type != 'cpu':
model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters())))
t0 = time.time()
for path, img, im0s, vid_cap in dataset:
img = torch.from_numpy(img).to(device)
img = img.half() if half else img.float()
img /= 255.0
if img.ndimension() == 3:
img = img.unsqueeze(0)
# Inference
t1 = time_synchronized()
with torch.no_grad():
pred = model(img, augment=opt.augment)[0]
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
t2 = time_synchronized()
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
for i, det in enumerate(pred):
if webcam:
p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
else:
p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
p = Path(p)
save_path = str(save_dir / p.name)
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
s += '%gx%g ' % img.shape[2:]
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]
if len(det):
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum()
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "
for *xyxy, conf, cls in reversed(det):
if save_txt:
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()
line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh)
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
if save_img or view_img:
label = f'{names[int(cls)]} {conf:.2f}'
if(cls == 1):
x1 = int(xyxy[0].item())
y1 = int(xyxy[1].item())
x2 = int(xyxy[2].item())
y2 = int(xyxy[3].item())
orig_img = im0
crop_img = im0[y1:y2, x1:x2]
cv2.imwrite('MRZ_1.png', crop_img)
plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3)
if view_img:
cv2.imshow(str(p), im0)
cv2.waitKey(1)
if save_img:
if dataset.mode == 'image':
cv2.imwrite(save_path, im0)
else:
if vid_path != save_path:
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release()
if vid_cap:
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else:
fps, w, h = 30, im0.shape[1], im0.shape[0]
save_path += '.mp4'
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
vid_writer.write(im0)
output_text = 'This is not a valid Passport'
text = pytesseract.image_to_string(Image.open('MRZ_1.png'))
text = text.replace(" ", "")
text=text[22:28]
today = date.today()
s = today.strftime('%Y%m%d')[2:]
if(text > s):
output_text = 'This is a Valid Passport'
if save_txt or save_img:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
print(f'Done. ({time.time() - t0:.3f}s)')
return [Image.fromarray(im0[:,:,::-1]), output_text]
output = gr.Textbox(label="Validation",elem_id="opbox")
Custom_description="<center>Custom Training Performed on Colab <a href='https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolov7-object-detection-on-custom-data.ipynb?authuser=2#scrollTo=1iqOPKjr22mL' style='text-decoration: underline' target='_blank'>Link</a> </center><br> <center>Model trained with test dataset of 'aadhar-card', 'credit-card','prescription' and 'passport' </center>"
Footer = (
"<center>Model Trained by: Owais Ahmad Data Scientist at <b> Thoucentric </b> <a href=\"https://www.linkedin.com/in/owaiskhan9654/\">Visit Profile</a> <br></center>"
"<center> Model Trained Kaggle Kernel <a href=\"https://www.kaggle.com/code/owaiskhan9654/training-yolov7-on-kaggle-on-custom-dataset/notebook\">Link</a> <br></center>"
"<center> Kaggle Profile <a href=\"https://www.kaggle.com/owaiskhan9654\">Link</a> <br> </center>"
"<center> HuggingFace🤗 Model Deployed Repository <a href=\"https://huggingface.co/owaiskha9654/Yolov7_Custom_Object_Detection\">Link</a> <br></center>"
)
examples1=[["Image1.jpeg", "Yolo_v7_Custom_trained_By_Owais"],["Image2.jpeg", "Yolo_v7_Custom_trained_By_Owais"],["Image3.jpeg", "Yolo_v7_Custom_trained_By_Owais",],["Image4.jpeg", "Yolo_v7_Custom_trained_By_Owais"],["Image5.jpeg", "Yolo_v7_Custom_trained_By_Owais"],["Image6.jpeg", "Yolo_v7_Custom_trained_By_Owais"],["horses.jpeg", "yolov7"],["horses.jpeg", "yolov7-e6"]]
Top_Title="<center>Intelligent Image to Text - IIT </center>"
css = ".output-image, .input-image, .image-preview {height: 300px !important}"
gr.Interface(detect_Custom,gr.Image(type="pil"),[gr.Image(type="pil"),output],css=css,title=Top_Title,examples=examples1,description=Custom_description,article=Footer,cache_examples=False).launch()