|
|
""" |
|
|
Smart keyframe generation with eye detection and emotion matching |
|
|
""" |
|
|
|
|
|
import os |
|
|
import cv2 |
|
|
import srt |
|
|
from typing import List |
|
|
import numpy as np |
|
|
from backend.eye_state_detector import EyeStateDetector, enhance_frame_selection |
|
|
from backend.utils import copy_and_rename_file |
|
|
|
|
|
def generate_keyframes_smart(video_path: str, story_subs: List, max_frames: int = 48): |
|
|
""" |
|
|
Generate keyframes with smart selection (no half-closed eyes) |
|
|
|
|
|
Args: |
|
|
video_path: Path to video file |
|
|
story_subs: List of subtitle objects for key story moments |
|
|
max_frames: Maximum number of frames to extract (default 48) |
|
|
""" |
|
|
|
|
|
print(f"🎯 Generating {len(story_subs)} smart keyframes (avoiding closed eyes)") |
|
|
|
|
|
|
|
|
eye_detector = EyeStateDetector() |
|
|
|
|
|
|
|
|
final_dir = "frames/final" |
|
|
os.makedirs(final_dir, exist_ok=True) |
|
|
|
|
|
|
|
|
for f in os.listdir(final_dir): |
|
|
if f.endswith('.png'): |
|
|
os.remove(os.path.join(final_dir, f)) |
|
|
|
|
|
|
|
|
cap = cv2.VideoCapture(video_path) |
|
|
if not cap.isOpened(): |
|
|
print(f"❌ Failed to open video: {video_path}") |
|
|
return False |
|
|
|
|
|
fps = cap.get(cv2.CAP_PROP_FPS) |
|
|
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
|
|
|
|
print(f"📹 Video: {fps} fps, {total_frames} total frames") |
|
|
print(f"👁️ Smart frame selection enabled (avoiding half-closed eyes)") |
|
|
|
|
|
|
|
|
extracted_count = 0 |
|
|
|
|
|
for i, sub in enumerate(story_subs[:max_frames]): |
|
|
try: |
|
|
print(f"\n📝 Processing segment {i+1}/{min(len(story_subs), max_frames)}: {sub.content[:40]}...") |
|
|
|
|
|
|
|
|
candidates = extract_candidate_frames( |
|
|
cap, sub, fps, |
|
|
num_candidates=5 |
|
|
) |
|
|
|
|
|
if candidates: |
|
|
|
|
|
best_frame, eye_state = select_best_candidate(candidates, eye_detector) |
|
|
|
|
|
if best_frame is not None: |
|
|
output_path = os.path.join(final_dir, f"frame{extracted_count:03d}.png") |
|
|
cv2.imwrite(output_path, best_frame) |
|
|
extracted_count += 1 |
|
|
|
|
|
print(f" ✅ Selected frame with {eye_state['state']} eyes (confidence: {eye_state['confidence']:.2f})") |
|
|
else: |
|
|
print(f" ⚠️ No suitable frame found (all had closed/half-closed eyes)") |
|
|
else: |
|
|
print(f" ⚠️ Failed to extract candidate frames") |
|
|
|
|
|
except Exception as e: |
|
|
print(f" ❌ Error processing segment {i+1}: {e}") |
|
|
|
|
|
cap.release() |
|
|
|
|
|
|
|
|
if extracted_count < max_frames and extracted_count < 10: |
|
|
print(f"\n⚠️ Only extracted {extracted_count} frames, extracting more with relaxed criteria...") |
|
|
_extract_additional_frames(video_path, final_dir, extracted_count, max_frames) |
|
|
|
|
|
|
|
|
final_frames = len([f for f in os.listdir(final_dir) if f.endswith('.png')]) |
|
|
print(f"\n✅ Total frames extracted: {final_frames}") |
|
|
print(f"👁️ All frames checked for eye quality") |
|
|
|
|
|
return final_frames > 0 |
|
|
|
|
|
|
|
|
def extract_candidate_frames(cap, subtitle, fps, num_candidates=5): |
|
|
"""Extract multiple candidate frames from a subtitle segment""" |
|
|
|
|
|
candidates = [] |
|
|
|
|
|
|
|
|
start_time = subtitle.start.total_seconds() |
|
|
end_time = subtitle.end.total_seconds() |
|
|
duration = end_time - start_time |
|
|
|
|
|
|
|
|
if duration < 0.5: |
|
|
num_candidates = 1 |
|
|
|
|
|
|
|
|
for i in range(num_candidates): |
|
|
|
|
|
if num_candidates == 1: |
|
|
time_offset = duration / 2 |
|
|
else: |
|
|
|
|
|
time_offset = 0.2 * duration + (i / (num_candidates - 1)) * 0.6 * duration |
|
|
|
|
|
timestamp = start_time + time_offset |
|
|
frame_num = int(timestamp * fps) |
|
|
|
|
|
|
|
|
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_num) |
|
|
ret, frame = cap.read() |
|
|
|
|
|
if ret and frame is not None: |
|
|
candidates.append(frame) |
|
|
|
|
|
return candidates |
|
|
|
|
|
|
|
|
def select_best_candidate(candidates: List[np.ndarray], eye_detector: EyeStateDetector): |
|
|
"""Select the best frame from candidates based on eye state""" |
|
|
|
|
|
best_frame = None |
|
|
best_score = -1 |
|
|
best_state = None |
|
|
|
|
|
for i, frame in enumerate(candidates): |
|
|
|
|
|
temp_path = f"temp_candidate_{i}.png" |
|
|
cv2.imwrite(temp_path, frame) |
|
|
|
|
|
|
|
|
eye_state = eye_detector.check_eyes_state(temp_path) |
|
|
|
|
|
|
|
|
score = calculate_frame_score(eye_state) |
|
|
|
|
|
|
|
|
if score > best_score: |
|
|
best_score = score |
|
|
best_frame = frame |
|
|
best_state = eye_state |
|
|
|
|
|
|
|
|
if os.path.exists(temp_path): |
|
|
os.remove(temp_path) |
|
|
|
|
|
return best_frame, best_state |
|
|
|
|
|
|
|
|
def calculate_frame_score(eye_state): |
|
|
"""Calculate a quality score for a frame based on eye state""" |
|
|
|
|
|
score = 0.0 |
|
|
|
|
|
|
|
|
if eye_state['state'] == 'open': |
|
|
score += 10.0 |
|
|
elif eye_state['state'] == 'partially_open': |
|
|
score += 7.0 |
|
|
elif eye_state['state'] == 'unknown': |
|
|
score += 5.0 |
|
|
elif eye_state['state'] == 'half_closed': |
|
|
score += 2.0 |
|
|
else: |
|
|
score += 0.0 |
|
|
|
|
|
|
|
|
score += eye_state['confidence'] * 3.0 |
|
|
|
|
|
|
|
|
if eye_state['suitable_for_comic']: |
|
|
score += 5.0 |
|
|
|
|
|
return score |
|
|
|
|
|
|
|
|
def _extract_additional_frames(video_path: str, output_dir: str, start_count: int, target_count: int): |
|
|
"""Extract additional frames with relaxed eye criteria""" |
|
|
|
|
|
cap = cv2.VideoCapture(video_path) |
|
|
if not cap.isOpened(): |
|
|
return |
|
|
|
|
|
eye_detector = EyeStateDetector() |
|
|
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) |
|
|
needed = target_count - start_count |
|
|
step = total_frames / needed if needed > 0 else 1 |
|
|
|
|
|
count = start_count |
|
|
attempts = 0 |
|
|
max_attempts = needed * 3 |
|
|
|
|
|
while count < target_count and attempts < max_attempts: |
|
|
frame_num = int((attempts * step) % total_frames) |
|
|
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_num) |
|
|
ret, frame = cap.read() |
|
|
|
|
|
if ret: |
|
|
|
|
|
temp_path = f"temp_check_{attempts}.png" |
|
|
cv2.imwrite(temp_path, frame) |
|
|
eye_state = eye_detector.check_eyes_state(temp_path) |
|
|
|
|
|
|
|
|
if eye_state['state'] not in ['closed', 'half_closed']: |
|
|
output_path = os.path.join(output_dir, f"frame{count:03d}.png") |
|
|
cv2.imwrite(output_path, frame) |
|
|
count += 1 |
|
|
print(f" ✅ Added frame {count} ({eye_state['state']} eyes)") |
|
|
|
|
|
|
|
|
if os.path.exists(temp_path): |
|
|
os.remove(temp_path) |
|
|
|
|
|
attempts += 1 |
|
|
|
|
|
cap.release() |
|
|
print(f" ✅ Extracted {count - start_count} additional frames") |