Upload app.py with huggingface_hub
Browse files
app.py
ADDED
|
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import torch
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from diffusers import StableDiffusionPipeline
|
| 5 |
+
from torchao.quantization import quantize_, Float8DynamicActivationFloat8WeightConfig
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
+
# --- 1. Model Loading and Optimization (AoT Compilation) ---
|
| 9 |
+
|
| 10 |
+
# Choose a stable diffusion model
|
| 11 |
+
MODEL_ID = "runwayml/stable-diffusion-v1-5"
|
| 12 |
+
|
| 13 |
+
# Initialize pipeline, disable safety checker for faster compilation and inference
|
| 14 |
+
# Use torch.float16 for efficiency on CUDA hardware
|
| 15 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
| 16 |
+
MODEL_ID,
|
| 17 |
+
torch_dtype=torch.float16,
|
| 18 |
+
safety_checker=None,
|
| 19 |
+
requires_safety_checker=False
|
| 20 |
+
)
|
| 21 |
+
pipe.to('cuda')
|
| 22 |
+
pipe.scheduler.set_timesteps(50) # Set max steps for consistent performance testing
|
| 23 |
+
|
| 24 |
+
print("Starting AoT Compilation...")
|
| 25 |
+
|
| 26 |
+
@spaces.GPU(duration=1500) # Reserve maximum time for startup compilation
|
| 27 |
+
def compile_optimized_unet():
|
| 28 |
+
# 1. Apply FP8 quantization (optional, requires H200/H100 for maximum benefit)
|
| 29 |
+
try:
|
| 30 |
+
quantize_(pipe.unet, Float8DynamicActivationFloat8WeightConfig())
|
| 31 |
+
print("✅ Applied FP8 quantization to UNet.")
|
| 32 |
+
except Exception as e:
|
| 33 |
+
print(f"⚠️ FP8 Quantization failed (may require specific hardware/libraries): {e}")
|
| 34 |
+
|
| 35 |
+
# 2. Define and capture example inputs for the UNet (the core engine)
|
| 36 |
+
# Standard Stable Diffusion UNet inputs (batch_size=2 for classifier-free guidance)
|
| 37 |
+
bsz = 2
|
| 38 |
+
latent_model_input = torch.randn(bsz, 4, 64, 64, device="cuda", dtype=torch.float16)
|
| 39 |
+
t = torch.randint(0, 1000, (bsz,), device="cuda')
|
| 40 |
+
encoder_hidden_states = torch.randn(bsz, 77, 768, device="cuda", dtype=torch.float16)
|
| 41 |
+
|
| 42 |
+
with spaces.aoti_capture(pipe.unet) as call:
|
| 43 |
+
pipe.unet(latent_model_input, t, encoder_hidden_states)
|
| 44 |
+
|
| 45 |
+
# 3. Export the model
|
| 46 |
+
exported = torch.export.export(
|
| 47 |
+
pipe.unet,
|
| 48 |
+
args=call.args,
|
| 49 |
+
kwargs=call.kwargs,
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
# 4. Compile the exported model using AoT
|
| 53 |
+
return spaces.aoti_compile(exported)
|
| 54 |
+
|
| 55 |
+
# Execute compilation during startup
|
| 56 |
+
compiled_unet = compile_optimized_unet()
|
| 57 |
+
# 5. Apply compiled model to the pipeline's UNet component
|
| 58 |
+
spaces.aoti_apply(compiled_unet, pipe.unet)
|
| 59 |
+
|
| 60 |
+
print("✅ AoT Compilation completed successfully.")
|
| 61 |
+
|
| 62 |
+
# --- 2. Inference Function (Running on GPU) ---
|
| 63 |
+
|
| 64 |
+
@spaces.GPU(duration=60) # Standard duration for image generation
|
| 65 |
+
def generate_image(
|
| 66 |
+
prompt: str,
|
| 67 |
+
negative_prompt: str,
|
| 68 |
+
steps: int,
|
| 69 |
+
seed: int
|
| 70 |
+
):
|
| 71 |
+
if not prompt:
|
| 72 |
+
raise gr.Error("Prompt cannot be empty.")
|
| 73 |
+
|
| 74 |
+
generator = torch.Generator(device="cuda").manual_seed(seed) if seed != -1 else None
|
| 75 |
+
|
| 76 |
+
steps = int(steps)
|
| 77 |
+
|
| 78 |
+
# Run inference using the optimized pipeline
|
| 79 |
+
result = pipe(
|
| 80 |
+
prompt=prompt,
|
| 81 |
+
negative_prompt=negative_prompt,
|
| 82 |
+
num_inference_steps=steps,
|
| 83 |
+
guidance_scale=7.5,
|
| 84 |
+
generator=generator
|
| 85 |
+
).images
|
| 86 |
+
|
| 87 |
+
return result
|
| 88 |
+
|
| 89 |
+
# --- 3. Gradio Interface ---
|
| 90 |
+
|
| 91 |
+
with gr.Blocks(title="Optimized Vision Model (AoT Powered)") as demo:
|
| 92 |
+
gr.HTML(
|
| 93 |
+
"""
|
| 94 |
+
<div style="text-align: center; max-width: 800px; margin: 0 auto;">
|
| 95 |
+
<h1><a href="https://huggingface.co/spaces/akhaliq/anycoder" target="_blank">Built with anycoder</a></h1>
|
| 96 |
+
<h2>High-Performance Creative VLM Simulator (AoT Optimized)</h2>
|
| 97 |
+
<p>This demo simulates a creative Vision Language Model using AoT-compiled Stable Diffusion for lightning-fast image generation.</p>
|
| 98 |
+
</div>
|
| 99 |
+
"""
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
with gr.Row():
|
| 103 |
+
with gr.Column(scale=1):
|
| 104 |
+
prompt = gr.Textbox(
|
| 105 |
+
label="Prompt (Input to VLM)",
|
| 106 |
+
placeholder="A futuristic city painted by Van Gogh, highly detailed.",
|
| 107 |
+
lines=3
|
| 108 |
+
)
|
| 109 |
+
negative_prompt = gr.Textbox(
|
| 110 |
+
label="Negative Prompt (What to avoid)",
|
| 111 |
+
placeholder="Blurry, bad quality, low resolution",
|
| 112 |
+
lines=2
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
with gr.Accordion("Generation Settings", open=True):
|
| 116 |
+
steps = gr.Slider(
|
| 117 |
+
minimum=10,
|
| 118 |
+
maximum=50,
|
| 119 |
+
step=1,
|
| 120 |
+
value=30,
|
| 121 |
+
label="Inference Steps (Higher = Slower/Better)"
|
| 122 |
+
)
|
| 123 |
+
seed = gr.Number(
|
| 124 |
+
value=-1,
|
| 125 |
+
label="Seed (-1 for random)"
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
generate_btn = gr.Button("Generate Image (AoT Fast!)", variant="primary")
|
| 129 |
+
|
| 130 |
+
with gr.Column(scale=2):
|
| 131 |
+
output_gallery = gr.Gallery(
|
| 132 |
+
label="Creative VLM Output",
|
| 133 |
+
show_label=True,
|
| 134 |
+
height=512,
|
| 135 |
+
columns=2,
|
| 136 |
+
object_fit="contain"
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
generate_btn.click(
|
| 140 |
+
fn=generate_image,
|
| 141 |
+
inputs=[prompt, negative_prompt, steps, seed],
|
| 142 |
+
outputs=output_gallery
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
gr.Examples(
|
| 146 |
+
examples=[
|
| 147 |
+
["A majestic wolf standing on a snowy mountain peak, cinematic lighting", "ugly, deformed, low detail", 30],
|
| 148 |
+
["Cyberpunk cat sitting in a neon-lit alley, 8k, digital art", "human, blurry, messy background", 40],
|
| 149 |
+
["A vintage photograph of a space shuttle launching from a tropical island", "modern, cartoon, painting", 25]
|
| 150 |
+
],
|
| 151 |
+
inputs=[prompt, negative_prompt, steps],
|
| 152 |
+
outputs=output_gallery,
|
| 153 |
+
fn=generate_image,
|
| 154 |
+
cache_examples=False,
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
demo.queue()
|
| 158 |
+
demo.launch()
|