Spaces:
Running
Running
import torch | |
import numpy as np | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchvision.models as models | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
class EPE(nn.Module): | |
def __init__(self): | |
super(EPE, self).__init__() | |
def forward(self, flow, gt, loss_mask): | |
loss_map = (flow - gt.detach()) ** 2 | |
loss_map = (loss_map.sum(1, True) + 1e-6) ** 0.5 | |
return loss_map * loss_mask | |
class Ternary(nn.Module): | |
def __init__(self): | |
super(Ternary, self).__init__() | |
patch_size = 7 | |
out_channels = patch_size * patch_size | |
self.w = np.eye(out_channels).reshape((patch_size, patch_size, 1, out_channels)) | |
self.w = np.transpose(self.w, (3, 2, 0, 1)) | |
self.w = torch.tensor(self.w).float().to(device) | |
def transform(self, img): | |
patches = F.conv2d(img, self.w, padding=3, bias=None) | |
transf = patches - img | |
transf_norm = transf / torch.sqrt(0.81 + transf**2) | |
return transf_norm | |
def rgb2gray(self, rgb): | |
r, g, b = rgb[:, 0:1, :, :], rgb[:, 1:2, :, :], rgb[:, 2:3, :, :] | |
gray = 0.2989 * r + 0.5870 * g + 0.1140 * b | |
return gray | |
def hamming(self, t1, t2): | |
dist = (t1 - t2) ** 2 | |
dist_norm = torch.mean(dist / (0.1 + dist), 1, True) | |
return dist_norm | |
def valid_mask(self, t, padding): | |
n, _, h, w = t.size() | |
inner = torch.ones(n, 1, h - 2 * padding, w - 2 * padding).type_as(t) | |
mask = F.pad(inner, [padding] * 4) | |
return mask | |
def forward(self, img0, img1): | |
img0 = self.transform(self.rgb2gray(img0)) | |
img1 = self.transform(self.rgb2gray(img1)) | |
return self.hamming(img0, img1) * self.valid_mask(img0, 1) | |
class SOBEL(nn.Module): | |
def __init__(self): | |
super(SOBEL, self).__init__() | |
self.kernelX = torch.tensor( | |
[ | |
[1, 0, -1], | |
[2, 0, -2], | |
[1, 0, -1], | |
] | |
).float() | |
self.kernelY = self.kernelX.clone().T | |
self.kernelX = self.kernelX.unsqueeze(0).unsqueeze(0).to(device) | |
self.kernelY = self.kernelY.unsqueeze(0).unsqueeze(0).to(device) | |
def forward(self, pred, gt): | |
N, C, H, W = pred.shape[0], pred.shape[1], pred.shape[2], pred.shape[3] | |
img_stack = torch.cat([pred.reshape(N * C, 1, H, W), gt.reshape(N * C, 1, H, W)], 0) | |
sobel_stack_x = F.conv2d(img_stack, self.kernelX, padding=1) | |
sobel_stack_y = F.conv2d(img_stack, self.kernelY, padding=1) | |
pred_X, gt_X = sobel_stack_x[: N * C], sobel_stack_x[N * C :] | |
pred_Y, gt_Y = sobel_stack_y[: N * C], sobel_stack_y[N * C :] | |
L1X, L1Y = torch.abs(pred_X - gt_X), torch.abs(pred_Y - gt_Y) | |
loss = L1X + L1Y | |
return loss | |
class MeanShift(nn.Conv2d): | |
def __init__(self, data_mean, data_std, data_range=1, norm=True): | |
c = len(data_mean) | |
super(MeanShift, self).__init__(c, c, kernel_size=1) | |
std = torch.Tensor(data_std) | |
self.weight.data = torch.eye(c).view(c, c, 1, 1) | |
if norm: | |
self.weight.data.div_(std.view(c, 1, 1, 1)) | |
self.bias.data = -1 * data_range * torch.Tensor(data_mean) | |
self.bias.data.div_(std) | |
else: | |
self.weight.data.mul_(std.view(c, 1, 1, 1)) | |
self.bias.data = data_range * torch.Tensor(data_mean) | |
self.requires_grad = False | |
class VGGPerceptualLoss(torch.nn.Module): | |
def __init__(self, rank=0): | |
super(VGGPerceptualLoss, self).__init__() | |
blocks = [] | |
pretrained = True | |
self.vgg_pretrained_features = models.vgg19(pretrained=pretrained).features | |
self.normalize = MeanShift([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], norm=True).cuda() | |
for param in self.parameters(): | |
param.requires_grad = False | |
def forward(self, X, Y, indices=None): | |
X = self.normalize(X) | |
Y = self.normalize(Y) | |
indices = [2, 7, 12, 21, 30] | |
weights = [1.0 / 2.6, 1.0 / 4.8, 1.0 / 3.7, 1.0 / 5.6, 10 / 1.5] | |
k = 0 | |
loss = 0 | |
for i in range(indices[-1]): | |
X = self.vgg_pretrained_features[i](X) | |
Y = self.vgg_pretrained_features[i](Y) | |
if (i + 1) in indices: | |
loss += weights[k] * (X - Y.detach()).abs().mean() * 0.1 | |
k += 1 | |
return loss | |
if __name__ == "__main__": | |
img0 = torch.zeros(3, 3, 256, 256).float().to(device) | |
img1 = torch.tensor(np.random.normal(0, 1, (3, 3, 256, 256))).float().to(device) | |
ternary_loss = Ternary() | |
print(ternary_loss(img0, img1).shape) | |