Spaces:
Paused
Paused
| import gradio as gr | |
| from langchain.chains import RetrievalQA | |
| from langchain.embeddings import OpenAIEmbeddings | |
| from langchain.llms import OpenAI | |
| from langchain.vectorstores import Qdrant | |
| from openai.error import InvalidRequestError | |
| from qdrant_client import QdrantClient | |
| from config import DB_CONFIG | |
| PERSIST_DIR_NAME = "nvdajp-book" | |
| def get_retrieval_qa(temperature: int, option: str) -> RetrievalQA: | |
| embeddings = OpenAIEmbeddings() | |
| db_url, db_api_key, db_collection_name = DB_CONFIG | |
| client = QdrantClient(url=db_url, api_key=db_api_key) | |
| db = Qdrant(client=client, collection_name=db_collection_name, embeddings=embeddings) | |
| if option is None or option == "All": | |
| retriever = db.as_retriever() | |
| else: | |
| retriever = db.as_retriever( | |
| search_kwargs={ | |
| "filter": {"category": option}, | |
| } | |
| ) | |
| return RetrievalQA.from_chain_type( | |
| llm=OpenAI(temperature=temperature), chain_type="stuff", retriever=retriever, return_source_documents=True, | |
| ) | |
| def get_related_url(metadata): | |
| urls = set() | |
| for m in metadata: | |
| # p = m['source'] | |
| url = m["url"] | |
| if url in urls: | |
| continue | |
| urls.add(url) | |
| category = m["category"] | |
| # print(m) | |
| yield f'<p>URL: <a href="{url}">{url}</a> (category: {category})</p>' | |
| def main(query: str, option: str, temperature: int): | |
| qa = get_retrieval_qa(temperature, option) | |
| try: | |
| result = qa(query) | |
| except InvalidRequestError as e: | |
| return "回答が見つかりませんでした。別な質問をしてみてください", str(e) | |
| else: | |
| metadata = [s.metadata for s in result["source_documents"]] | |
| html = "<div>" + "\n".join(get_related_url(metadata)) + "</div>" | |
| return result["result"], html | |
| nvdajp_book_qa = gr.Interface( | |
| fn=main, | |
| inputs=[ | |
| gr.Textbox(label="query"), | |
| gr.Radio(["All", "ja-book", "ja-nvda-user-guide", "en-nvda-user-guide"], label="絞り込み", info="ドキュメント制限する?"), | |
| gr.Slider(0, 2) | |
| ], | |
| outputs=[gr.Textbox(label="answer"), gr.outputs.HTML()], | |
| ) | |
| nvdajp_book_qa.launch() | |