Spaces:
Sleeping
Sleeping
Create openai/oai_extractor.py
Browse files- openai/oai_extractor.py +78 -0
openai/oai_extractor.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Union, Optional
|
2 |
+
from indexify_extractor_sdk import Content, Extractor, Feature
|
3 |
+
from pydantic import BaseModel, Field
|
4 |
+
import os
|
5 |
+
import base64
|
6 |
+
from openai import OpenAI
|
7 |
+
from pdf2image import convert_from_path
|
8 |
+
import tempfile
|
9 |
+
import mimetypes
|
10 |
+
|
11 |
+
class OAIExtractorConfig(BaseModel):
|
12 |
+
model_name: Optional[str] = Field(default='gpt-3.5-turbo')
|
13 |
+
key: Optional[str] = Field(default=None)
|
14 |
+
prompt: str = Field(default='You are a helpful assistant.')
|
15 |
+
query: Optional[str] = Field(default=None)
|
16 |
+
|
17 |
+
class OAIExtractor(Extractor):
|
18 |
+
name = "tensorlake/openai"
|
19 |
+
description = "An extractor that let's you use LLMs from OpenAI."
|
20 |
+
system_dependencies = []
|
21 |
+
input_mime_types = ["text/plain", "application/pdf", "image/jpeg", "image/png"]
|
22 |
+
|
23 |
+
def __init__(self):
|
24 |
+
super(OAIExtractor, self).__init__()
|
25 |
+
|
26 |
+
def extract(self, content: Content, params: OAIExtractorConfig) -> List[Union[Feature, Content]]:
|
27 |
+
contents = []
|
28 |
+
model_name = params.model_name
|
29 |
+
key = params.key
|
30 |
+
prompt = params.prompt
|
31 |
+
query = params.query
|
32 |
+
|
33 |
+
if content.content_type in ["application/pdf"]:
|
34 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as temp_file:
|
35 |
+
temp_file.write(content.data)
|
36 |
+
file_path = temp_file.name
|
37 |
+
images = convert_from_path(file_path)
|
38 |
+
image_files = []
|
39 |
+
for i in range(len(images)):
|
40 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_image_file:
|
41 |
+
images[i].save(temp_image_file.name, 'JPEG')
|
42 |
+
image_files.append(temp_image_file.name)
|
43 |
+
elif content.content_type in ["image/jpeg", "image/png"]:
|
44 |
+
image_files = []
|
45 |
+
suffix = mimetypes.guess_extension(content.content_type)
|
46 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as temp_image_file:
|
47 |
+
temp_image_file.write(content.data)
|
48 |
+
file_path = temp_image_file.name
|
49 |
+
image_files.append(file_path)
|
50 |
+
else:
|
51 |
+
text = content.data.decode("utf-8")
|
52 |
+
if query is None:
|
53 |
+
query = text
|
54 |
+
file_path = None
|
55 |
+
|
56 |
+
def encode_image(image_path):
|
57 |
+
with open(image_path, "rb") as image_file:
|
58 |
+
return base64.b64encode(image_file.read()).decode('utf-8')
|
59 |
+
|
60 |
+
if ('OPENAI_API_KEY' not in os.environ) and (key is None):
|
61 |
+
response_content = "The OPENAI_API_KEY environment variable is not present."
|
62 |
+
else:
|
63 |
+
if ('OPENAI_API_KEY' in os.environ) and (key is None):
|
64 |
+
client = OpenAI(api_key=os.environ["OPENAI_API_KEY"])
|
65 |
+
else:
|
66 |
+
client = OpenAI(api_key=key)
|
67 |
+
if file_path:
|
68 |
+
encoded_images = [encode_image(image_path) for image_path in image_files]
|
69 |
+
messages_content = [ { "role": "user", "content": [ { "type": "text", "text": prompt, } ] + [ { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{encoded_image}", }, } for encoded_image in encoded_images ], } ]
|
70 |
+
else:
|
71 |
+
messages_content = [ {"role": "system", "content": prompt}, {"role": "user", "content": query} ]
|
72 |
+
|
73 |
+
response = client.chat.completions.create( model=model_name, messages=messages_content )
|
74 |
+
response_content = response.choices[0].message.content
|
75 |
+
|
76 |
+
contents.append(Content.from_text(response_content))
|
77 |
+
|
78 |
+
return contents
|