Spaces:
Sleeping
Sleeping
tensorkelechi
commited on
Commit
•
6993f7f
1
Parent(s):
eb1fcea
Update app.py
Browse files
app.py
CHANGED
@@ -98,6 +98,104 @@ if st.session_state != "":
|
|
98 |
except Exception as e:
|
99 |
st.error(e)
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
# We store the conversation in the session state.
|
102 |
# This will be use to render the chat conversation.
|
103 |
# We initialize it with the first message we want to be greeted with.
|
|
|
98 |
except Exception as e:
|
99 |
st.error(e)
|
100 |
|
101 |
+
import os
|
102 |
+
from langchain_community.document_loaders import PyPDFLoader
|
103 |
+
from langchain_community.vectorstores import faiss
|
104 |
+
from langchain.memory import ConversationBufferMemory
|
105 |
+
from langchain_google_genai import ChatGoogleGenerativeAI, GoogleGenerativeAIEmbeddings
|
106 |
+
from tempfile import NamedTemporaryFile
|
107 |
+
from dotenv import load_dotenv
|
108 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
109 |
+
from langchain.chains import ConversationalRetrievalChain
|
110 |
+
import streamlit as st
|
111 |
+
import nest_asyncio
|
112 |
+
|
113 |
+
nest_asyncio.apply()
|
114 |
+
load_dotenv()
|
115 |
+
|
116 |
+
# Initialize app resources
|
117 |
+
st.set_page_config(page_title="StudyAssist", page_icon=":book:")
|
118 |
+
st.title("StudyAssist(pharmassist-v0)")
|
119 |
+
st.write(
|
120 |
+
"An AI/RAG application to aid students in their studies, specially optimized for the pharm 028 students. In simpler terms, chat with your pdf"
|
121 |
+
)
|
122 |
+
|
123 |
+
|
124 |
+
@st.cache_resource
|
125 |
+
def initialize_resources():
|
126 |
+
llm_gemini = ChatGoogleGenerativeAI(
|
127 |
+
model="gemini-1.5-flash-latest", google_api_key=os.getenv("GOOGLE_API_KEY")
|
128 |
+
)
|
129 |
+
return llm_gemini
|
130 |
+
|
131 |
+
|
132 |
+
def get_retriever(pdf_file):
|
133 |
+
with NamedTemporaryFile(suffix="pdf") as temp:
|
134 |
+
temp.write(pdf_file.getvalue())
|
135 |
+
pdf_loader = PyPDFLoader(temp.name, extract_images=True)
|
136 |
+
pages = pdf_loader.load()
|
137 |
+
|
138 |
+
# st.write(f"AI Chatbot for {course_material}")
|
139 |
+
|
140 |
+
underlying_embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
141 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
142 |
+
chunk_size=1000,
|
143 |
+
chunk_overlap=20,
|
144 |
+
length_function=len,
|
145 |
+
is_separator_regex=False,
|
146 |
+
separators="\n",
|
147 |
+
)
|
148 |
+
documents = text_splitter.split_documents(pages)
|
149 |
+
vectorstore = faiss.FAISS.from_documents(documents, underlying_embeddings)
|
150 |
+
doc_retiever = vectorstore.as_retriever(
|
151 |
+
search_type="mmr", search_kwargs={"k": 5, "fetch_k": 10}
|
152 |
+
)
|
153 |
+
|
154 |
+
return doc_retiever
|
155 |
+
|
156 |
+
|
157 |
+
chat_model = initialize_resources()
|
158 |
+
|
159 |
+
# Streamlit UI
|
160 |
+
# Course list and pdf retrieval
|
161 |
+
|
162 |
+
courses = ["PMB", "PCL", "Kelechi_research"] # "GSP", "CPM", "PCG", "PCH"
|
163 |
+
course_pdfs = None
|
164 |
+
doc_retriever = None
|
165 |
+
conversational_chain = None
|
166 |
+
|
167 |
+
# course = st.sidebar.selectbox("Choose course", (courses))
|
168 |
+
# docs_path = f"pdfs/{course}"
|
169 |
+
# course_pdfs = os.listdir(docs_path)
|
170 |
+
# pdfs = [os.path.join(docs_path, pdf) for pdf in course_pdfs]
|
171 |
+
|
172 |
+
course_material = "{Not selected}"
|
173 |
+
|
174 |
+
|
175 |
+
# @st.cache_resource
|
176 |
+
def query_response(query, _retriever):
|
177 |
+
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
178 |
+
conversational_chain = ConversationalRetrievalChain.from_llm(
|
179 |
+
llm=chat_model, retriever=_retriever, memory=memory, verbose=False
|
180 |
+
)
|
181 |
+
response = conversational_chain.run(query)
|
182 |
+
|
183 |
+
return response
|
184 |
+
|
185 |
+
|
186 |
+
if "doc" not in st.session_state:
|
187 |
+
st.session_state.doc = ""
|
188 |
+
|
189 |
+
course_material = st.file_uploader("or Upload your own pdf", type="pdf")
|
190 |
+
|
191 |
+
if st.session_state != "":
|
192 |
+
try:
|
193 |
+
with st.spinner("loading document.."):
|
194 |
+
doc_retriever = get_retriever(course_material)
|
195 |
+
st.success("File loading successful, vector db initialize")
|
196 |
+
except Exception as e:
|
197 |
+
st.error(e)
|
198 |
+
|
199 |
# We store the conversation in the session state.
|
200 |
# This will be use to render the chat conversation.
|
201 |
# We initialize it with the first message we want to be greeted with.
|