Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
import tensorflow_hub as hub
|
3 |
+
import numpy as np
|
4 |
+
import csv
|
5 |
+
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
from IPython.display import Audio
|
8 |
+
from scipy.io import wavfile
|
9 |
+
|
10 |
+
# Load the model.
|
11 |
+
model = hub.load('https://tfhub.dev/google/yamnet/1')
|
12 |
+
|
13 |
+
# Find the name of the class with the top score when mean-aggregated across frames.
|
14 |
+
def class_names_from_csv(class_map_csv_text):
|
15 |
+
"""Returns list of class names corresponding to score vector."""
|
16 |
+
class_names = []
|
17 |
+
with tf.io.gfile.GFile(class_map_csv_text) as csvfile:
|
18 |
+
reader = csv.DictReader(csvfile)
|
19 |
+
for row in reader:
|
20 |
+
class_names.append(row['display_name'])
|
21 |
+
|
22 |
+
return class_names
|
23 |
+
|
24 |
+
class_map_path = model.class_map_path().numpy()
|
25 |
+
class_names = class_names_from_csv(class_map_path)
|
26 |
+
|
27 |
+
|
28 |
+
def ensure_sample_rate(original_sample_rate, waveform,
|
29 |
+
desired_sample_rate=16000):
|
30 |
+
"""Resample waveform if required."""
|
31 |
+
if original_sample_rate != desired_sample_rate:
|
32 |
+
desired_length = int(round(float(len(waveform)) /
|
33 |
+
original_sample_rate * desired_sample_rate))
|
34 |
+
waveform = scipy.signal.resample(waveform, desired_length)
|
35 |
+
return desired_sample_rate, waveform
|
36 |
+
|
37 |
+
os.system("wget https://storage.googleapis.com/audioset/miaow_16k.wav")
|
38 |
+
|
39 |
+
def inference(audio):
|
40 |
+
# wav_file_name = 'speech_whistling2.wav'
|
41 |
+
wav_file_name = audio
|
42 |
+
sample_rate, wav_data = wavfile.read(wav_file_name, 'rb')
|
43 |
+
sample_rate, wav_data = ensure_sample_rate(sample_rate, wav_data)
|
44 |
+
|
45 |
+
waveform = wav_data / tf.int16.max
|
46 |
+
|
47 |
+
# Run the model, check the output.
|
48 |
+
scores, embeddings, spectrogram = model(waveform)
|
49 |
+
|
50 |
+
scores_np = scores.numpy()
|
51 |
+
spectrogram_np = spectrogram.numpy()
|
52 |
+
infered_class = class_names[scores_np.mean(axis=0).argmax()]
|
53 |
+
|
54 |
+
return f'The main sound is: {infered_class}'
|
55 |
+
|
56 |
+
gr.Interface(inference,"audio","text").launch()
|
57 |
+
|