root commited on
Commit
3ef9463
·
1 Parent(s): d2ca82a

update full model

Browse files
README.md CHANGED
@@ -1,29 +1,445 @@
1
- ---
2
- title: Song Generation
3
- emoji: 🎵
4
- colorFrom: purple
5
- colorTo: gray
6
- sdk: docker
7
- app_port: 7860
8
- models:
9
- - tencent/SongGeneration
10
- ---
11
 
 
12
  <p align="center">
13
- <a href="https://levo-demo.github.io/">Demo</a> &nbsp;|&nbsp; <a href="https://arxiv.org/abs/2506.07520">Paper</a> &nbsp;|&nbsp; <a href="https://github.com/tencent-ailab/songgeneration">Code</a>
14
  </p>
15
- This repository is the official weight repository for LeVo: High-Quality Song Generation with Multi-Preference Alignment. In this repository, we provide the SongGeneration model, inference scripts, and the checkpoint that has been trained on the Million Song Dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
  ## Overview
18
 
19
  We develop the SongGeneration model. It is an LM-based framework consisting of **LeLM** and a **music codec**. LeLM is capable of parallelly modeling two types of tokens: mixed tokens, which represent the combined audio of vocals and accompaniment to achieve vocal-instrument harmony, and dual-track tokens, which separately encode vocals and accompaniment for high-quality song generation. The music codec reconstructs the dual-track tokens into highfidelity music audio. SongGeneration significantly improves over the open-source music generation models and performs competitively with current state-of-the-art industry systems. For more details, please refer to our [paper](https://arxiv.org/abs/2506.07520).
20
 
21
- <img src="https://github.com/tencent-ailab/songgeneration/blob/main/img/over.jpg?raw=true" alt="img" style="zoom:100%;" />
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
 
23
- ## Note
 
 
24
 
25
- Since the model is trained based on data longer than 1 minute, if the given lyrics are too short, the model will automatically fill in the lyrics to extend the duration.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
  ## License
28
 
29
- The code and weights in this repository is released in the [LICENSE](LICENSE) file.
 
 
 
 
 
 
 
 
 
 
 
1
+ # SongGeneration
 
 
 
 
 
 
 
 
 
2
 
3
+ <p align="center"><img src="img/logo.jpg" width="40%"></p>
4
  <p align="center">
5
+ <a href="https://levo-demo.github.io/">Demo</a> &nbsp;|&nbsp; <a href="https://arxiv.org/abs/2506.07520">Paper</a> &nbsp;|&nbsp; <a href="https://huggingface.co/waytan22/SongGeneration">Hugging Face</a> &nbsp;|&nbsp; <a href="https://huggingface.co/spaces/waytan22/SongGeneration-LeVo">Space Demo</a>
6
  </p>
7
+
8
+
9
+
10
+ This repository is the official repository for “LeVo: High-Quality Song Generation with Multi-Preference Alignment” (NeurIPS 2025). In this repository, we provide the SongGeneration model, inference scripts,pretrained checkpoints, and some music generation tools.
11
+
12
+ ## News and Updates
13
+
14
+ * **2025.10.15🔥**: We have updated the codebase to improve **inference speed** and **generation quality**, and adapted it to the **latest model version**. Please **update to the newest code** to ensure the **best performance and user experience**.
15
+ * **2025.10.14 🔥**: We have released the **large model (SongGeneration-large)**.
16
+ * **2025.10.13 🔥**: We have released the **full time model (SongGeneration-base-full)** and **evaluation performance**.
17
+ * **2025.10.12 🔥**: We have released the **english enhanced model (SongGeneration-base-new)**.
18
+ * **2025.09.23 🔥**: We have released the [Data Processing Pipeline](https://github.com/tencent-ailab/SongPrep), which is capable of **analyzing the structure and lyrics** of entire songs and **providing precise timestamps** without the need for additional source separation. On the human-annotated test set [SSLD-200](https://huggingface.co/datasets/waytan22/SSLD-200), the model’s performance outperforms mainstream models including Gemini-2.5, Seed-ASR, and Qwen3-ASR.
19
+ * **2025.07.25 🔥**: SongGeneration can now run with as little as **10GB of GPU memory**.
20
+ * **2025.07.18 🔥**: SongGeneration now supports generation of **pure music**, **pure vocals**, and **dual-track (vocals + accompaniment separately)** outputs.
21
+ * **2025.06.16 🔥**: We have released the **SongGeneration** series.
22
+
23
+ ## TODOs📋
24
+
25
+ - [ ] Release SongGeneration-v1.5 (trained on a larger multilingual dataset, supports more languages, and integrates a Reward Model with Reinforcement Learning to enhance musicality and lyric alignment)
26
+ - [ ] Release finetuning scripts.
27
+ - [ ] Release Music Codec and VAE.
28
+ - [x] Release large model.
29
+ - [x] Release full time model.
30
+ - [x] Release English enhanced model.
31
+ - [x] Release data processing pipeline.
32
+ - [x] Update Low memory usage model.
33
+ - [x] Support single vocal/bgm track generation.
34
+
35
+ ## Model Versions
36
+
37
+ | Model | Max Length | Language | GPU Menmory | RFT(A100) | Download Link |
38
+ | ------------------------- | :--------: | :------------------: | :---------: | :-------: | ------------------------------------------------------------ |
39
+ | SongGeneration-base | 2m30s | zh | 10G/16G | 1.26 | [Huggingface](https://huggingface.co/tencent/SongGeneration/tree/main/ckpt/songgeneration_base) |
40
+ | SongGeneration-base-new | 2m30s | zh, en | 10G/16G | 1.26 | [Huggingface](https://huggingface.co/lglg666/SongGeneration-base-new) |
41
+ | SongGeneration-base-full | 4m30s | zh, en | 12G/18G | 1.30 | [Huggingface](https://huggingface.co/lglg666/SongGeneration-base-full) |
42
+ | SongGeneration-large | 4m30s | zh, en | 22G/28G | 1.51 | [Huggingface](https://huggingface.co/lglg666/SongGeneration-large) |
43
+ | SongGeneration-v1.5-small | 2m | zh, en, es, ja, etc. | - | - | Coming soon |
44
+ | SongGeneration-v1.5-base | 4m30s | zh, en, es, ja, etc. | - | - | Coming soon |
45
+ | SongGeneration-v1.5-large | 4m30s | zh, en, es, ja, etc. | - | - | Coming soon |
46
+
47
+ 💡 **Notes:**
48
+
49
+ - **GPU Memory** — “X / Y” means X: no prompt audio; Y: with prompt audio.
50
+ - **RFT** — Real Forward Time (pure inference, excluding model loading).
51
 
52
  ## Overview
53
 
54
  We develop the SongGeneration model. It is an LM-based framework consisting of **LeLM** and a **music codec**. LeLM is capable of parallelly modeling two types of tokens: mixed tokens, which represent the combined audio of vocals and accompaniment to achieve vocal-instrument harmony, and dual-track tokens, which separately encode vocals and accompaniment for high-quality song generation. The music codec reconstructs the dual-track tokens into highfidelity music audio. SongGeneration significantly improves over the open-source music generation models and performs competitively with current state-of-the-art industry systems. For more details, please refer to our [paper](https://arxiv.org/abs/2506.07520).
55
 
56
+ <img src="img/over.jpg" alt="img" style="zoom:100%;" />
57
+
58
+ ## Installation
59
+
60
+ ### Start from scratch
61
+
62
+ You can install the necessary dependencies using the `requirements.txt` file with Python>=3.8.12 and CUDA>=11.8:
63
+
64
+ ```bash
65
+ pip install -r requirements.txt
66
+ pip install -r requirements_nodeps.txt --no-deps
67
+ ```
68
+
69
+ **(Optional)** Then install flash attention from git. For example, if you're using Python 3.10 and CUDA 12.0
70
+
71
+ ```bash
72
+ pip install https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.4.post1/flash_attn-2.7.4.post1+cu12torch2.6cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
73
+ ```
74
+
75
+ ### Start with docker
76
+
77
+ ```bash
78
+ docker pull juhayna/song-generation-levo:hf0613
79
+ docker run -it --gpus all --network=host juhayna/song-generation-levo:hf0613 /bin/bash
80
+ ```
81
+
82
+ ### Other deploy examples
83
+
84
+ - Windows platform with ComfyUI: https://github.com/smthemex/ComfyUI_SongGeneration
85
+ - Windows installer: http://bilibili.com/video/BV1ATK8zQE8L/?vd_source=22cfc54298226c4161b1aff457d17585
86
+ - Quick start with ComfyUI on CNB: https://cnb.cool/tencent/tencent-ailab/examples/SongGeneration-comfyui
87
+
88
+ ## Inference
89
+
90
+ To ensure the model runs correctly, **please download all the required folders** from the original source at [Hugging Face](https://huggingface.co/collections/lglg666/levo-68d0c3031c370cbfadade126).
91
+
92
+ - Download `ckpt` and `third_party` folder from [Hugging Face](https://huggingface.co/lglg666/SongGeneration-Runtime/tree/main) or [Hugging Face](https://huggingface.co/tencent/SongGeneration/tree/main), and move them into the **root directory** of the project. You can also download models using hugging face-cli.
93
+
94
+ ```
95
+ huggingface-cli download lglg666/SongGeneration-Runtime --local-dir ./runtime
96
+ mv runtime/ckpt ckpt
97
+ mv runtime/third_party third_party
98
+ ```
99
+
100
+ - Download the specific model checkpoint and save it to your specified checkpoint directory: `ckpt_path` (We provide multiple versions of model checkpoints. Please select the most suitable version based on your needs and download the corresponding file. Also, ensure the folder name matches the model version name.) Your can also download models using hugging face-cli.
101
+
102
+ ```
103
+ # download SongGeneration-base
104
+ huggingface-cli download lglg666/SongGeneration-base --local-dir ./songgeneration_base
105
+ # download SongGeneration-base-new
106
+ huggingface-cli download lglg666/SongGeneration-base-new --local-dir ./songgeneration_base_new
107
+ # download SongGeneration-base-full
108
+ huggingface-cli download lglg666/SongGeneration-base-full --local-dir ./songgeneration_base_full
109
+ # download SongGeneration-large
110
+ huggingface-cli download lglg666/SongGeneration-large --local-dir ./songgeneration_large
111
+ ```
112
+
113
+ Once everything is set up, you can run the inference script using the following command:
114
+
115
+ ```bash
116
+ sh generate.sh ckpt_path lyrics.jsonl output_path
117
+ ```
118
+
119
+ - You may provides sample inputs in JSON Lines (`.jsonl`) format. Each line represents an individual song generation request. The model expects each input to contain the following fields:
120
+
121
+ - `idx`: A unique identifier for the output song. It will be used as the name of the generated audio file.
122
+ - `gt_lyric`:The lyrics to be used in generation. It must follow the format of `[Structure] Text`, where `Structure` defines the musical section (e.g., `[Verse]`, `[Chorus]`). See Input Guide.
123
+ - `descriptions` : (Optional) You may customize the text prompt to guide the model’s generation. This can include attributes like gender, timbre, genre, emotion, instrument, and BPM. See Input Guide.
124
+ - `prompt_audio_path`: (Optional) Path to a 10-second reference audio file. If provided, the model will generate a new song in a similar style to the given reference.
125
+
126
+ - `auto_prompt_audio_type`: (Optional) Used only if `prompt_audio_path` is not provided. This allows the model to automatically select a reference audio from a predefined library based on a given style. Supported values include:
127
+ - `'Pop'`, `'R&B'`, `'Dance'`, `'Jazz'`, `'Folk'`, `'Rock'`,`'Chinese Style'`, `'Chinese Tradition'`, `'Metal'`, `'Reggae'`, `'Chinese Opera'`, `'Auto'`.
128
+ - **Note:** If certain optional fields are not required, they can be omitted.
129
+
130
+ - Outputs of the loader `output_path`:
131
+
132
+ - `audio`: generated audio files
133
+ - `jsonl`: output jsonls
134
+
135
+ - An example command may look like:
136
+
137
+ ```bash
138
+ sh generate.sh songgeneration_base sample/lyrics.jsonl sample/output
139
+ ```
140
+
141
+ If you encounter **out-of-memory (OOM**) issues, you can manually enable low-memory inference mode using the `--low_mem` flag. For example:
142
+
143
+ ```bash
144
+ sh generate.sh ckpt_path lyrics.jsonl output_path --low_mem
145
+ ```
146
+
147
+ If your GPU device does **not support Flash Attention** or your environment does **not have Flash Attention installed**, you can disable it by adding the `--not_use_flash_attn` flag. For example:
148
+
149
+ ```bash
150
+ sh generate.sh ckpt_path lyrics.jsonl output_path --not_use_flash_attn
151
+ ```
152
+
153
+ By default, the model generates **songs with both vocals and accompaniment**. If you want to generate **pure music**, **pure vocals**, or **separated vocal and accompaniment tracks**, please use the following flags:
154
+
155
+ - `--bgm`  Generate **pure music**
156
+ - `--vocal` Generate **vocal-only (a cappella)**
157
+ - `--separate` Generate **separated vocal and accompaniment tracks**
158
+
159
+ For example:
160
 
161
+ ```bash
162
+ sh generate.sh ckpt_path lyrics.jsonl output_path --separate
163
+ ```
164
 
165
+ ## Input Guide
166
+
167
+ An example input file can be found in `sample/lyrics.jsonl`
168
+
169
+ ### 🎵 Lyrics Input Format
170
+
171
+ The `gt_lyric` field defines the lyrics and structure of the song. It consists of multiple musical section, each starting with a structure label. The model uses these labels to guide the musical and lyrical progression of the generated song.
172
+
173
+ #### 📌 Structure Labels
174
+
175
+ - The following segments **should not** contain lyrics (they are purely instrumental):
176
+
177
+ - `[intro-short]`, `[intro-medium]`, `[inst-short]`, `[inst-medium]`, `[outro-short]`, `[outro-medium]`
178
+
179
+ > - `short` indicates a segment of approximately 0–10 seconds
180
+ > - `medium` indicates a segment of approximately 10–20 seconds
181
+ > - We find that [inst] label is less stable, so we recommend that you do not use it.
182
+
183
+ - The following segments **require lyrics**:
184
+
185
+ - `[verse]`, `[chorus]`, `[bridge]`
186
+
187
+ #### 🧾 Lyrics Formatting Rules
188
+
189
+ - Each section is **separated by ` ; `**
190
+
191
+ - Within lyrical segments (`[verse]`, `[chorus]`, `[bridge]`), lyrics must be written in complete sentences and separated by a period (`.`)
192
+
193
+ - A complete lyric string may look like:
194
+
195
+ ```
196
+ [intro-short] ; [verse] These faded memories of us. I can't erase the tears you cried before. Unchained this heart to find its way. My peace won't beg you to stay ; [bridge] If ever your truth still remains. Turn around and see. Life rearranged its games. All these lessons in mistakes. Even years may never erase ; [inst-short] ; [chorus] Like a fool begs for supper. I find myself waiting for her. Only to find the broken pieces of my heart. That was needed for my soul to love again ; [outro-short]
197
+ ```
198
+
199
+ - More examples can be found in `sample/test_en_input.jsonl` and `sample/test_zh_input.jsonl`.
200
+
201
+ ### 📝 Description Input Format
202
+
203
+ The `descriptions` field allows you to control various musical attributes of the generated song. It can describe up to six musical dimensions: **Gender** (e.g., male, female), **Timbre** (e.g., dark, bright, soft), **Genre** (e.g., pop, jazz, rock), **Emotion** (e.g., sad, energetic, romantic), **Instrument** (e.g., piano, drums, guitar), **BPM** (e.g., the bpm is 120).
204
+
205
+ - All six dimensions are optional — you can specify any subset of them.
206
+
207
+ - The order of dimensions is flexible.
208
+
209
+ - Use **commas (`,`)** to separate different attributes.
210
+
211
+ - Although the model supports open vocabulary, we recommend using predefined tags for more stable and reliable performance. A list of commonly supported tags for each dimension is available in the `sample/description/` folder.
212
+
213
+ - Here are a few valid `descriptions` inputs:
214
+
215
+ ```
216
+ - female, dark, pop, sad, piano and drums.
217
+ - male, piano, jazz.
218
+ - male, dark, the bpm is 110.
219
+ ```
220
+
221
+ ### 🎧Prompt Audio Usage Notes
222
+
223
+ - The input audio file can be longer than 10 seconds, but only the first 10 seconds will be used.
224
+ - For best musicality and structure, it is recommended to use the chorus section of a song as the prompt audio.
225
+ - You can use this field to influence genre, instrumentation, rhythm, and voice
226
+
227
+ #### ⚠️ Important Considerations
228
+
229
+ - **Avoid providing both `prompt_audio_path` and `descriptions` at the same time.**
230
+ If both are present, and they convey conflicting information, the model may struggle to follow instructions accurately, resulting in degraded generation quality.
231
+ - If `prompt_audio_path` is not provided, you can instead use `auto_prompt_audio_type` for automatic reference selection.
232
+
233
+ ## Gradio UI
234
+
235
+ You can start up the UI with the following command:
236
+
237
+ ```bash
238
+ sh tools/gradio/run.sh ckpt_path
239
+ ```
240
+
241
+ ## Evaluation Performance
242
+
243
+ ### Chinese
244
+
245
+ <table>
246
+ <tr>
247
+ <th rowspan="2">Model</th>
248
+ <th rowspan="2">Open-Source</th>
249
+ <th rowspan="2">PER↓</th>
250
+ <th colspan="4" style="text-align:center;">Audiobox Aesthetics ↑</th>
251
+ <th colspan="5" style="text-align:center;">SongEval ↑</th>
252
+ </tr>
253
+ <tr>
254
+ <th>CE</th><th>CU</th><th>PC</th><th>PQ</th>
255
+ <th>COH</th><th>MUS</th><th>MEM</th><th>CLA</th><th>NAT</th>
256
+ </tr>
257
+ <tr>
258
+ <td>Suno</td>
259
+ <td>❌</td>
260
+ <td>21.6%</td>
261
+ <td>7.65</td><td>7.86</td><td>5.94</td><td>8.35</td>
262
+ <td><b>4.41</b></td><td><b>4.34</b></td><td><b>4.44</b></td><td><b>4.38</b></td><td><b>4.26</b></td>
263
+ </tr>
264
+ <tr>
265
+ <td>Mureka</td>
266
+ <td>❌</td>
267
+ <td>7.2%</td>
268
+ <td>7.71</td><td>7.83</td><td><b>6.39</b></td><td><b>8.44</b></td>
269
+ <td>4.01</td><td>3.85</td><td>3.73</td><td>3.87</td><td>3.75</td>
270
+ </tr>
271
+ <tr>
272
+ <td>Haimian</td>
273
+ <td>❌</td>
274
+ <td>11.8%</td>
275
+ <td>7.56</td><td>7.85</td><td>5.89</td><td>8.27</td>
276
+ <td>3.69</td><td>3.43</td><td>3.51</td><td>3.52</td><td>3.34</td>
277
+ </tr>
278
+ <tr>
279
+ <td>ACE-Step</td>
280
+ <td>✅</td>
281
+ <td>37.1%</td>
282
+ <td>7.37</td><td>7.52</td><td><b>6.26</b></td><td>7.85</td>
283
+ <td>3.68</td><td>3.45</td><td>3.54</td><td>3.48</td><td>3.38</td>
284
+ </tr>
285
+ <tr>
286
+ <td>Diffrhythm-v1,2</td>
287
+ <td>✅</td>
288
+ <td>8.78%</td>
289
+ <td>6.91</td><td>7.45</td><td>5.45</td><td>7.99</td>
290
+ <td>2.93</td><td>2.60</td><td>2.70</td><td>2.71</td><td>2.60</td>
291
+ </tr>
292
+ <tr>
293
+ <td>YUE</td>
294
+ <td>✅</td>
295
+ <td>14.9%</td>
296
+ <td>7.29</td><td>7.53</td><td>6.19</td><td>7.96</td>
297
+ <td>3.68</td><td>3.43</td><td>3.49</td><td>3.49</td><td>3.42</td>
298
+ </tr>
299
+ <tr>
300
+ <td>SongGeneration-base</td>
301
+ <td>✅</td>
302
+ <td>7.2%</td>
303
+ <td>7.78</td><td>7.90</td><td>6.03</td><td>8.42</td>
304
+ <td>3.96</td><td>3.80</td><td>3.85</td><td>3.74</td><td>3.71</td>
305
+ </tr>
306
+ <tr>
307
+ <td>SongGeneration-base-new</td>
308
+ <td>✅</td>
309
+ <td><b>5.7%</b></td>
310
+ <td><b>7.82</b></td><td><b>7.94</b></td><td>6.07</td><td>8.43</td>
311
+ <td>4.07</td><td>3.92</td><td>3.98</td><td>3.93</td><td>3.86</td>
312
+ </tr>
313
+ <tr>
314
+ <td>SongGeneration-base-full</td>
315
+ <td>✅</td>
316
+ <td>8.4%</td>
317
+ <td><b>7.81</b></td><td><b>7.94</b></td><td>6.07</td><td>8.41</td>
318
+ <td>4.02</td><td>3.88</td><td>3.94</td><td>3.87</td><td>3.80</td>
319
+ </tr>
320
+ <tr>
321
+ <td>SongGeneration-large</td>
322
+ <td>✅</td>
323
+ <td><b>5.1%</b></td>
324
+ <td><b>7.82</b></td><td><b>7.95</b></td><td>6.09</td><td><b>8.46</b></td>
325
+ <td><b>4.08</b></td><td><b>3.94</b></td><td><b>4.00</b></td><td><b>3.94</b></td><td><b>3.87</b></td>
326
+ </tr>
327
+ </table>
328
+
329
+ ### English
330
+
331
+ <table>
332
+ <tr>
333
+ <th rowspan="2">Model</th>
334
+ <th rowspan="2">Open-Source</th>
335
+ <th rowspan="2">PER↓</th>
336
+ <th colspan="4" style="text-align:center;">Audiobox Aesthetics ↑</th>
337
+ <th colspan="5" style="text-align:center;">SongEval ↑</th>
338
+ </tr>
339
+ <tr>
340
+ <th>CE</th><th>CU</th><th>PC</th><th>PQ</th>
341
+ <th>COH</th><th>MUS</th><th>MEM</th><th>CLA</th><th>NAT</th>
342
+ </tr>
343
+ <tr>
344
+ <td>Suno</td>
345
+ <td>❌</td>
346
+ <td>15.6%</td>
347
+ <td>7.64</td><td>7.85</td><td>5.84</td><td>8.19</td>
348
+ <td><b>4.49</b></td><td><b>4.35</b></td><td><b>4.47</b></td><td><b>4.35</b></td><td><b>4.23</b></td>
349
+ </tr>
350
+ <tr>
351
+ <td>Mureka</td>
352
+ <td>❌</td>
353
+ <td><b>12.6%</b></td>
354
+ <td>7.71</td><td>7.93</td><td><b>6.46</b></td><td>8.39</td>
355
+ <td>4.06</td><td>3.88</td><td>3.90</td><td>3.90</td><td>3.73</td>
356
+ </tr>
357
+ <tr>
358
+ <td>Haimian</td>
359
+ <td>❌</td>
360
+ <td>26.6%</td>
361
+ <td><b>7.85</b></td><td><b>8.01</b></td><td>5.28</td><td><b>8.44</b></td>
362
+ <td>3.83</td><td>3.68</td><td>3.71</td><td>3.61</td><td>3.45</td>
363
+ </tr>
364
+ <tr>
365
+ <td>ACE-Step</td>
366
+ <td>✅</td>
367
+ <td>32.1%</td>
368
+ <td>7.19</td><td>7.37</td><td>6.16</td><td>7.57</td>
369
+ <td>3.59</td><td>3.34</td><td>3.43</td><td>3.36</td><td>3.27</td>
370
+ </tr>
371
+ <tr>
372
+ <td>Diffrhythm-v1.2</td>
373
+ <td>✅</td>
374
+ <td>17.8%</td>
375
+ <td>7.02</td><td>7.58</td><td>5.96</td><td>7.81</td>
376
+ <td>3.51</td><td>3.12</td><td>3.32</td><td>3.21</td><td>3.08</td>
377
+ </tr>
378
+ <tr>
379
+ <td>YUE</td>
380
+ <td>✅</td>
381
+ <td>27.3%</td>
382
+ <td>7.04</td><td>7.22</td><td>5.89</td><td>7.67</td>
383
+ <td>3.58</td><td>3.24</td><td>3.42</td><td>3.37</td><td>3.30</td>
384
+ </tr>
385
+ <tr>
386
+ <td>SongGeneration-base</td>
387
+ <td>✅</td>
388
+ <td>-</td>
389
+ <td>-</td><td>-</td><td>-</td><td>-</td>
390
+ <td>-</td><td>-</td><td>-</td><td>-</td><td>-</td>
391
+ </tr>
392
+ <tr>
393
+ <td>SongGeneration-base-new</td>
394
+ <td>✅</td>
395
+ <td>16.2%</td>
396
+ <td><b>7.78</b></td><td>7.97</td><td>6.03</td><td>8.37</td>
397
+ <td>4.05</td><td>3.90</td><td>3.99</td><td>3.91</td><td>3.79</td>
398
+ </tr>
399
+ <tr>
400
+ <td>SongGeneration-base-full</td>
401
+ <td>✅</td>
402
+ <td>20.1%</td>
403
+ <td>7.76</td><td>7.98</td><td>5.96</td><td>8.39</td>
404
+ <td>4.02</td><td>3.87</td><td>3.97</td><td>3.86</td><td>3.74</td>
405
+ </tr>
406
+ <tr>
407
+ <td>SongGeneration-large</td>
408
+ <td>✅</td>
409
+ <td><b>14.9%</b></td>
410
+ <td><b>7.85</b></td><td><b>8.05</b></td><td><b>6.17</b></td><td><b>8.46</b></td>
411
+ <td><b>4.08</b></td><td><b>3.94</b></td><td><b>4.03</b></td><td><b>3.93</b></td><td><b>3.82</b></td>
412
+ </tr>
413
+ </table>
414
+
415
+ ### Notes
416
+
417
+ 1. The evaluation results of SongGeneration are based on **200 generated songs**, including **100 using descriptions** and **100 using `auto_prompt_audio_type=Auto`**. We also provide **40 English** and **40 Chinese** example inputs in
418
+ `sample/test_en_input.jsonl` and `sample/test_zh_input.jsonl` for reference.
419
+ 2. Since the model attempts to clone the timbre and musical style of the given prompt audio, the choice of prompt audio can significantly affect generation performance, and may lead to fluctuations in the evaluation metrics.
420
+ 3. The format of the input lyrics has a strong impact on generation quality. If the output quality appears suboptimal, please check whether your lyrics format is correct. You can find more examples of properly formatted inputs in `sample/test_en_input.jsonl` and `sample/test_zh_input.jsonl`.
421
+
422
+ ## Citation
423
+
424
+ ```
425
+ @article{lei2025levo,
426
+ title={LeVo: High-Quality Song Generation with Multi-Preference Alignment},
427
+ author={Lei, Shun and Xu, Yaoxun and Lin, Zhiwei and Zhang, Huaicheng and Tan, Wei and Chen, Hangting and Yu, Jianwei and Zhang, Yixuan and Yang, Chenyu and Zhu, Haina and Wang, Shuai and Wu, Zhiyong and Yu, Dong},
428
+ journal={arXiv preprint arXiv:2506.07520},
429
+ year={2025}
430
+ }
431
+ ```
432
 
433
  ## License
434
 
435
+ The code and weights in this repository is released in the [LICENSE](LICENSE) file.
436
+
437
+
438
+ ## Contact
439
+
440
+ Use WeChat or QQ to scan blow QR code.
441
+
442
+ <div style="display: flex; justify-content: center; gap: 20px; width: 100%;">
443
+ <img src="img/contact.png" height="300" />
444
+ <img src="img/contactQQ.jpg" height="300" />
445
+ </div>
app.py CHANGED
@@ -4,17 +4,23 @@ from datetime import datetime
4
  import yaml
5
  import time
6
  import re
 
7
  import os.path as op
 
8
  from download import download_model
 
9
  # 下载模型
10
  APP_DIR = op.dirname(op.abspath(__file__))
11
  download_model(APP_DIR)
 
 
 
12
  print("Successful downloaded model.")
13
 
14
  from levo_inference import LeVoInference
15
 
16
  # 模型初始化
17
- MODEL = LeVoInference(op.join(APP_DIR, "ckpt/songgeneration_base/"))
18
 
19
  EXAMPLE_LYRICS = """
20
  [intro-short]
@@ -105,7 +111,7 @@ def generate_song(lyric, description=None, prompt_audio=None, genre=None, cfg_co
105
  progress(0.0, "Start Generation")
106
  start = time.time()
107
 
108
- audio_data = MODEL(lyric_norm, description, prompt_audio, genre, op.join(APP_DIR, "ckpt/prompt.pt"), gen_type, params).cpu().permute(1, 0).float().numpy()
109
 
110
  end = time.time()
111
 
@@ -246,5 +252,6 @@ lyrics
246
 
247
  # 启动应用
248
  if __name__ == "__main__":
 
249
  demo.launch(server_name="0.0.0.0", server_port=7860)
250
 
 
4
  import yaml
5
  import time
6
  import re
7
+ import os
8
  import os.path as op
9
+ import torch
10
  from download import download_model
11
+
12
  # 下载模型
13
  APP_DIR = op.dirname(op.abspath(__file__))
14
  download_model(APP_DIR)
15
+ base_full_path = op.join(APP_DIR, "ckpt", "songgeneration_base_full")
16
+ os.makedirs(base_full_path, exist_ok=True)
17
+ download_model(base_full_path, repo_id="lglg666/SongGeneration-base-full", revision="19ebdb6")
18
  print("Successful downloaded model.")
19
 
20
  from levo_inference import LeVoInference
21
 
22
  # 模型初始化
23
+ MODEL = LeVoInference(base_full_path)
24
 
25
  EXAMPLE_LYRICS = """
26
  [intro-short]
 
111
  progress(0.0, "Start Generation")
112
  start = time.time()
113
 
114
+ audio_data = MODEL(lyric_norm, description, prompt_audio, genre, op.join(APP_DIR, "tools/new_prompt.pt"), gen_type, params).cpu().permute(1, 0).float().numpy()
115
 
116
  end = time.time()
117
 
 
252
 
253
  # 启动应用
254
  if __name__ == "__main__":
255
+ torch.set_num_threads(1)
256
  demo.launch(server_name="0.0.0.0", server_port=7860)
257
 
download.py CHANGED
@@ -1,17 +1,17 @@
1
  from huggingface_hub import snapshot_download
2
  import os
3
 
4
- def download_model(local_dir):
5
- repo_id = "tencent/SongGeneration"
6
 
 
7
  downloaded_path = snapshot_download(
8
  repo_id=repo_id,
9
  local_dir=local_dir,
10
- revision="647f0a5",
11
  token=os.environ.get("HF_TOKEN"),
12
  ignore_patterns=['.git*']
13
  )
14
  print(f"File downloaded to:{downloaded_path}")
15
 
 
16
  if __name__ == '__main__':
17
  download_model('.')
 
1
  from huggingface_hub import snapshot_download
2
  import os
3
 
 
 
4
 
5
+ def download_model(local_dir, repo_id="tencent/SongGeneration", revision="647f0a5"):
6
  downloaded_path = snapshot_download(
7
  repo_id=repo_id,
8
  local_dir=local_dir,
9
+ revision=revision,
10
  token=os.environ.get("HF_TOKEN"),
11
  ignore_patterns=['.git*']
12
  )
13
  print(f"File downloaded to:{downloaded_path}")
14
 
15
+
16
  if __name__ == '__main__':
17
  download_model('.')
levo_inference.py CHANGED
@@ -76,11 +76,7 @@ class LeVoInference(torch.nn.Module):
76
  melody_is_wav = True
77
  elif genre is not None and auto_prompt_path is not None:
78
  auto_prompt = torch.load(auto_prompt_path)
79
- merge_prompt = [item for sublist in auto_prompt.values() for item in sublist]
80
- if genre == "Auto":
81
- prompt_token = merge_prompt[np.random.randint(0, len(merge_prompt))]
82
- else:
83
- prompt_token = auto_prompt[genre][np.random.randint(0, len(auto_prompt[genre]))]
84
  pmt_wav = prompt_token[:,[0],:]
85
  vocal_wav = prompt_token[:,[1],:]
86
  bgm_wav = prompt_token[:,[2],:]
 
76
  melody_is_wav = True
77
  elif genre is not None and auto_prompt_path is not None:
78
  auto_prompt = torch.load(auto_prompt_path)
79
+ prompt_token = auto_prompt[genre][np.random.randint(0, len(auto_prompt[genre]))]
 
 
 
 
80
  pmt_wav = prompt_token[:,[0],:]
81
  vocal_wav = prompt_token[:,[1],:]
82
  bgm_wav = prompt_token[:,[2],:]
tools/gradio/app.py CHANGED
@@ -6,6 +6,7 @@ import yaml
6
  import time
7
  import re
8
  import os.path as op
 
9
  from levo_inference_lowmem import LeVoInference
10
 
11
  EXAMPLE_LYRICS = """
@@ -98,7 +99,7 @@ def generate_song(lyric, description=None, prompt_audio=None, genre=None, cfg_co
98
  progress(0.0, "Start Generation")
99
  start = time.time()
100
 
101
- audio_data = MODEL(lyric_norm, description, prompt_audio, genre, op.join(APP_DIR, "ckpt/prompt.pt"), gen_type, params).cpu().permute(1, 0).float().numpy()
102
 
103
  end = time.time()
104
 
@@ -239,4 +240,5 @@ lyrics
239
 
240
  # 启动应用
241
  if __name__ == "__main__":
 
242
  demo.launch(server_name="0.0.0.0", server_port=8081)
 
6
  import time
7
  import re
8
  import os.path as op
9
+ import torch
10
  from levo_inference_lowmem import LeVoInference
11
 
12
  EXAMPLE_LYRICS = """
 
99
  progress(0.0, "Start Generation")
100
  start = time.time()
101
 
102
+ audio_data = MODEL(lyric_norm, description, prompt_audio, genre, op.join(APP_DIR, "tools/new_prompt.pt"), gen_type, params).cpu().permute(1, 0).float().numpy()
103
 
104
  end = time.time()
105
 
 
240
 
241
  # 启动应用
242
  if __name__ == "__main__":
243
+ torch.set_num_threads(1)
244
  demo.launch(server_name="0.0.0.0", server_port=8081)
tools/gradio/levo_inference.py CHANGED
@@ -71,11 +71,7 @@ class LeVoInference(torch.nn.Module):
71
  melody_is_wav = True
72
  elif genre is not None and auto_prompt_path is not None:
73
  auto_prompt = torch.load(auto_prompt_path)
74
- merge_prompt = [item for sublist in auto_prompt.values() for item in sublist]
75
- if genre == "Auto":
76
- prompt_token = merge_prompt[np.random.randint(0, len(merge_prompt))]
77
- else:
78
- prompt_token = auto_prompt[genre][np.random.randint(0, len(auto_prompt[genre]))]
79
  pmt_wav = prompt_token[:,[0],:]
80
  vocal_wav = prompt_token[:,[1],:]
81
  bgm_wav = prompt_token[:,[2],:]
 
71
  melody_is_wav = True
72
  elif genre is not None and auto_prompt_path is not None:
73
  auto_prompt = torch.load(auto_prompt_path)
74
+ prompt_token = auto_prompt[genre][np.random.randint(0, len(auto_prompt[genre]))]
 
 
 
 
75
  pmt_wav = prompt_token[:,[0],:]
76
  vocal_wav = prompt_token[:,[1],:]
77
  bgm_wav = prompt_token[:,[2],:]
tools/gradio/levo_inference_lowmem.py CHANGED
@@ -66,11 +66,7 @@ class LeVoInference(torch.nn.Module):
66
  torch.cuda.empty_cache()
67
  elif genre is not None and auto_prompt_path is not None:
68
  auto_prompt = torch.load(auto_prompt_path)
69
- merge_prompt = [item for sublist in auto_prompt.values() for item in sublist]
70
- if genre == "Auto":
71
- prompt_token = merge_prompt[np.random.randint(0, len(merge_prompt))]
72
- else:
73
- prompt_token = auto_prompt[genre][np.random.randint(0, len(auto_prompt[genre]))]
74
  pmt_wav = prompt_token[:,[0],:]
75
  vocal_wav = prompt_token[:,[1],:]
76
  bgm_wav = prompt_token[:,[2],:]
 
66
  torch.cuda.empty_cache()
67
  elif genre is not None and auto_prompt_path is not None:
68
  auto_prompt = torch.load(auto_prompt_path)
69
+ prompt_token = auto_prompt[genre][np.random.randint(0, len(auto_prompt[genre]))]
 
 
 
 
70
  pmt_wav = prompt_token[:,[0],:]
71
  vocal_wav = prompt_token[:,[1],:]
72
  bgm_wav = prompt_token[:,[2],:]
tools/gradio/run.sh CHANGED
@@ -1,3 +1,7 @@
 
 
 
 
1
  export USER=root
2
  export PYTHONDONTWRITEBYTECODE=1
3
  export TRANSFORMERS_CACHE="$(pwd)/third_party/hub"
 
1
+ export OMP_NUM_THREADS=1
2
+ export MKL_NUM_THREADS=1
3
+ export CUDA_LAUNCH_BLOCKING=0
4
+
5
  export USER=root
6
  export PYTHONDONTWRITEBYTECODE=1
7
  export TRANSFORMERS_CACHE="$(pwd)/third_party/hub"
tools/new_prompt.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db5490d73565f95047fa826cd43d2e1416f3b15e61bebd57c193813b752cb988
3
+ size 2102124