Hunyuan3D-Part / app.py
root
support safetensor
27cacbd
raw
history blame
8.07 kB
import gradio as gr
import os
import sys
import argparse
import numpy as np
import trimesh
from pathlib import Path
import torch
import pytorch_lightning as pl
import spaces
sys.path.append('P3-SAM')
from demo.auto_mask import AutoMask
sys.path.append('XPart')
from partgen.partformer_pipeline import PartFormerPipeline
from partgen.utils.misc import get_config_from_file
automask = AutoMask()
def _load_pipeline():
pl.seed_everything(2026, workers=True)
cfg_path = str(Path(__file__).parent / "XPart/partgen/config" / "infer.yaml")
config = get_config_from_file(cfg_path)
assert hasattr(config, "ckpt") or hasattr(
config, "ckpt_path"
), "ckpt or ckpt_path must be specified in config"
pipeline = PartFormerPipeline.from_pretrained(
model_path="tencent/Hunyuan3D-Part",
verbose=True,
)
device = "cuda"
pipeline.to(device=device, dtype=torch.float32)
return pipeline
_PIPELINE = _load_pipeline()
output_path = 'P3-SAM/results/gradio'
os.makedirs(output_path, exist_ok=True)
def is_supported_3d_file(filename):
# 获取文件扩展名(小写),并去除开头的点
ext = os.path.splitext(filename)[1].lower()
return ext in ['.glb', '.ply', '.obj']
@spaces.GPU
def segment(mesh_path, postprocess=True, postprocess_threshold=0.95, seed=42):
if mesh_path is None:
gr.Warning("No Input Mesh")
return None, None
if not is_supported_3d_file(mesh_path):
gr.Warning("Only support glb ply obj.")
return None, None
mesh = trimesh.load(mesh_path, force='mesh', process=False)
aabb, face_ids, mesh = automask.predict_aabb(mesh, seed=seed, is_parallel=False, post_process=postprocess, threshold=postprocess_threshold)
color_map = {}
unique_ids = np.unique(face_ids)
for i in unique_ids:
if i == -1:
continue
part_color = np.random.rand(3) * 255
color_map[i] = part_color
face_colors = []
for i in face_ids:
if i == -1:
face_colors.append([0, 0, 0])
else:
face_colors.append(color_map[i])
face_colors = np.array(face_colors).astype(np.uint8)
mesh_save = mesh.copy()
mesh_save.visual.face_colors = face_colors
file_path = os.path.join(output_path, 'segment_mesh.glb')
mesh_save.export(file_path)
face_id_save_path = os.path.join(output_path, 'face_id.npy')
np.save(face_id_save_path, face_ids)
gr_state = [(aabb, mesh_path)]
return file_path, face_id_save_path, gr_state
@spaces.GPU(duration=150)
def generate(mesh_path, seed=42, gr_state=None):
if mesh_path is None:
gr.Warning("No Input Mesh")
gr_state[0] = (None, None)
return None, None, None
if gr_state[0][0] is None or mesh_path != gr_state[0][1]:
gr.Warning("Please segment the mesh first")
return None, None, None
aabb = gr_state[0][0]
# Ensure deterministic behavior per request
try:
pl.seed_everything(int(seed), workers=True)
except Exception:
pl.seed_everything(2026, workers=True)
additional_params = {"output_type": "trimesh"}
obj_mesh, (out_bbox, mesh_gt_bbox, explode_object) = _PIPELINE(
mesh_path=mesh_path,
aabb=aabb,
octree_resolution=512,
**additional_params,
)
# Export all results to temporary files for Gradio Model3D
obj_path = os.path.join(output_path, 'obj_mesh.glb')
out_bbox_path = os.path.join(output_path, 'out_bbox.glb')
explode_path = os.path.join(output_path, 'explode.glb')
obj_mesh.export(obj_path)
out_bbox.export(out_bbox_path)
explode_object.export(explode_path)
return obj_path, out_bbox_path, explode_path
with gr.Blocks() as demo:
gr.Markdown(
'''
# ☯️ Hunyuan3D Part:P3-SAM&XPart
This demo allows you to generate parts given a 3D model using Hunyuan3D-Part.
First segment the 3D model using P3-SAM and then generate parts using XPart.
Please upload glb ply or obj 3D model files.
Our examples are at the bottoms.
'''
)
with gr.Row():
with gr.Column():
# P3-SAM
gr.Markdown(
'''
## P3-SAM: Native 3D Part Segmentation
[Paper](https://arxiv.org/abs/2509.06784) | [Project Page](https://murcherful.github.io/P3-SAM/) | [Code](https://github.com/Tencent-Hunyuan/Hunyuan3D-Part/P3-SAM/) | [Model](https://huggingface.co/tencent/Hunyuan3D-Part)
This is a demo of P3-SAM, a native 3D part segmentation method that can segment a mesh into different parts.
Input a mesh and push the "Segment" button to get the segmentation results.
'''
)
p3sam_button = gr.Button("Segment")
p3sam_input = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="Input Mesh")
p3sam_output = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="Segmentation Result")
p3sam_face_id_output = gr.File(label='Face ID')
p3sam_postprocess = gr.Checkbox(value=True, label="Post-processing")
p3sam_postprocess_threshold = gr.Number(value=0.95, label="Post-processing Threshold")
p3sam_seed = gr.Number(value=42, label="Random Seed")
gr.Markdown(
'''
P3-SAM will clean your mesh. To get face-aligned labels, you can download the "Segmentation Result" and "Face ID".
You can also use the "Connectivity" and "Post-processing" options to control the behavior of the algorithm.
The "Post-processing" will merge the small parts according to the threshold. The smaller the threshold, the more parts will be merged.
'''
)
image_dump = gr.Image(label="Ref Image", visible=False)
with gr.Column():
# XPart
gr.Markdown(
'''
## XPart: High-fidelity and Structure-coherent Shapede Composition
[Paper](https://arxiv.org/abs/2509.08643) | [Project Page](https://yanxinhao.github.io/Projects/X-Part/) | [Code](https://github.com/Tencent-Hunyuan/Hunyuan3D-Part/XPart/) | [Model](https://huggingface.co/tencent/Hunyuan3D-Part)
This is a demo of the lite version of XPart, a high-fidelity and structure-coherent shape-decomposition method that can generate parts from a 3D model.
Input a mesh, segment it using P3-SAM on the left, and push the "Generate" button to get the generated parts.
''' )
xpart_button = gr.Button("Generate")
xpart_output = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="Generated Parts")
xpart_output_bbox = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="Gnerated Parts with BBox")
xpart_output_exploded = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], label="Exploded Object")
xpart_seed = gr.Number(value=42, label="Random Seed")
gr_state = gr.State(value=[(None, None)])
with gr.Row():
gr.Examples(examples=[
['P3-SAM/demo/assets/Female_Warrior.png' , 'P3-SAM/demo/assets/Female_Warrior.glb' ],
['P3-SAM/demo/assets/Suspended_Island.png' , 'P3-SAM/demo/assets/Suspended_Island.glb' ],
['P3-SAM/demo/assets/Beetle_Car.png' , 'P3-SAM/demo/assets/Beetle_Car.glb' ],
['XPart/data/Koi_Fish.png' , 'XPart/data/Koi_Fish.glb' ],
['XPart/data/Motorcycle.png' , 'XPart/data/Motorcycle.glb' ],
['XPart/data/Gundam.png' , 'XPart/data/Gundam.glb' ],
['XPart/data/Computer_Desk.png' , 'XPart/data/Computer_Desk.glb' ],
['XPart/data/Coffee_Machine.png' , 'XPart/data/Coffee_Machine.glb' ],
],
inputs = [image_dump, p3sam_input],
)
p3sam_button.click(segment, inputs=[p3sam_input, p3sam_postprocess, p3sam_postprocess_threshold, p3sam_seed], outputs=[p3sam_output, p3sam_face_id_output, gr_state])
xpart_button.click(generate, inputs=[p3sam_input, xpart_seed, gr_state], outputs=[xpart_output, xpart_output_bbox, xpart_output_exploded])
if __name__ == '__main__':
demo.launch()