Huiwenshi's picture
Upload ./hy3dgen/texgen/custom_rasterizer/lib/custom_rasterizer_kernel/rasterizer.cpp with huggingface_hub
0faa2c1 verified
raw
history blame
6.78 kB
#include "rasterizer.h"
void rasterizeTriangleCPU(int idx, float* vt0, float* vt1, float* vt2, int width, int height, INT64* zbuffer, float* d, float occlusion_truncation) {
float x_min = std::min(vt0[0], std::min(vt1[0],vt2[0]));
float x_max = std::max(vt0[0], std::max(vt1[0],vt2[0]));
float y_min = std::min(vt0[1], std::min(vt1[1],vt2[1]));
float y_max = std::max(vt0[1], std::max(vt1[1],vt2[1]));
for (int px = x_min; px < x_max + 1; ++px) {
if (px < 0 || px >= width)
continue;
for (int py = y_min; py < y_max + 1; ++py) {
if (py < 0 || py >= height)
continue;
float vt[2] = {px + 0.5, py + 0.5};
float baryCentricCoordinate[3];
calculateBarycentricCoordinate(vt0, vt1, vt2, vt, baryCentricCoordinate);
if (isBarycentricCoordInBounds(baryCentricCoordinate)) {
int pixel = py * width + px;
if (zbuffer == 0) {
zbuffer[pixel] = (INT64)(idx + 1);
continue;
}
float depth = baryCentricCoordinate[0] * vt0[2] + baryCentricCoordinate[1] * vt1[2] + baryCentricCoordinate[2] * vt2[2];
float depth_thres = 0;
if (d) {
depth_thres = d[pixel] * 0.49999f + 0.5f + occlusion_truncation;
}
int z_quantize = depth * (2<<17);
INT64 token = (INT64)z_quantize * MAXINT + (INT64)(idx + 1);
if (depth < depth_thres)
continue;
zbuffer[pixel] = std::min(zbuffer[pixel], token);
}
}
}
}
void barycentricFromImgcoordCPU(float* V, int* F, int* findices, INT64* zbuffer, int width, int height, int num_vertices, int num_faces,
float* barycentric_map, int pix)
{
INT64 f = zbuffer[pix] % MAXINT;
if (f == (MAXINT-1)) {
findices[pix] = 0;
barycentric_map[pix * 3] = 0;
barycentric_map[pix * 3 + 1] = 0;
barycentric_map[pix * 3 + 2] = 0;
return;
}
findices[pix] = f;
f -= 1;
float barycentric[3] = {0, 0, 0};
if (f >= 0) {
float vt[2] = {float(pix % width) + 0.5f, float(pix / width) + 0.5f};
float* vt0_ptr = V + (F[f * 3] * 4);
float* vt1_ptr = V + (F[f * 3 + 1] * 4);
float* vt2_ptr = V + (F[f * 3 + 2] * 4);
float vt0[2] = {(vt0_ptr[0] / vt0_ptr[3] * 0.5f + 0.5f) * (width - 1) + 0.5f, (0.5f + 0.5f * vt0_ptr[1] / vt0_ptr[3]) * (height - 1) + 0.5f};
float vt1[2] = {(vt1_ptr[0] / vt1_ptr[3] * 0.5f + 0.5f) * (width - 1) + 0.5f, (0.5f + 0.5f * vt1_ptr[1] / vt1_ptr[3]) * (height - 1) + 0.5f};
float vt2[2] = {(vt2_ptr[0] / vt2_ptr[3] * 0.5f + 0.5f) * (width - 1) + 0.5f, (0.5f + 0.5f * vt2_ptr[1] / vt2_ptr[3]) * (height - 1) + 0.5f};
calculateBarycentricCoordinate(vt0, vt1, vt2, vt, barycentric);
barycentric[0] = barycentric[0] / vt0_ptr[3];
barycentric[1] = barycentric[1] / vt1_ptr[3];
barycentric[2] = barycentric[2] / vt2_ptr[3];
float w = 1.0f / (barycentric[0] + barycentric[1] + barycentric[2]);
barycentric[0] *= w;
barycentric[1] *= w;
barycentric[2] *= w;
}
barycentric_map[pix * 3] = barycentric[0];
barycentric_map[pix * 3 + 1] = barycentric[1];
barycentric_map[pix * 3 + 2] = barycentric[2];
}
void rasterizeImagecoordsKernelCPU(float* V, int* F, float* d, INT64* zbuffer, float occlusion_trunc, int width, int height, int num_vertices, int num_faces, int f)
{
float* vt0_ptr = V + (F[f * 3] * 4);
float* vt1_ptr = V + (F[f * 3 + 1] * 4);
float* vt2_ptr = V + (F[f * 3 + 2] * 4);
float vt0[3] = {(vt0_ptr[0] / vt0_ptr[3] * 0.5f + 0.5f) * (width - 1) + 0.5f, (0.5f + 0.5f * vt0_ptr[1] / vt0_ptr[3]) * (height - 1) + 0.5f, vt0_ptr[2] / vt0_ptr[3] * 0.49999f + 0.5f};
float vt1[3] = {(vt1_ptr[0] / vt1_ptr[3] * 0.5f + 0.5f) * (width - 1) + 0.5f, (0.5f + 0.5f * vt1_ptr[1] / vt1_ptr[3]) * (height - 1) + 0.5f, vt1_ptr[2] / vt1_ptr[3] * 0.49999f + 0.5f};
float vt2[3] = {(vt2_ptr[0] / vt2_ptr[3] * 0.5f + 0.5f) * (width - 1) + 0.5f, (0.5f + 0.5f * vt2_ptr[1] / vt2_ptr[3]) * (height - 1) + 0.5f, vt2_ptr[2] / vt2_ptr[3] * 0.49999f + 0.5f};
rasterizeTriangleCPU(f, vt0, vt1, vt2, width, height, zbuffer, d, occlusion_trunc);
}
std::vector<torch::Tensor> rasterize_image_cpu(torch::Tensor V, torch::Tensor F, torch::Tensor D,
int width, int height, float occlusion_truncation, int use_depth_prior)
{
int num_faces = F.size(0);
int num_vertices = V.size(0);
auto options = torch::TensorOptions().dtype(torch::kInt32).requires_grad(false);
auto INT64_options = torch::TensorOptions().dtype(torch::kInt64).requires_grad(false);
auto findices = torch::zeros({height, width}, options);
INT64 maxint = (INT64)MAXINT * (INT64)MAXINT + (MAXINT - 1);
auto z_min = torch::ones({height, width}, INT64_options) * (long)maxint;
if (!use_depth_prior) {
for (int i = 0; i < num_faces; ++i) {
rasterizeImagecoordsKernelCPU(V.data_ptr<float>(), F.data_ptr<int>(), 0,
(INT64*)z_min.data_ptr<long>(), occlusion_truncation, width, height, num_vertices, num_faces, i);
}
} else {
for (int i = 0; i < num_faces; ++i)
rasterizeImagecoordsKernelCPU(V.data_ptr<float>(), F.data_ptr<int>(), D.data_ptr<float>(),
(INT64*)z_min.data_ptr<long>(), occlusion_truncation, width, height, num_vertices, num_faces, i);
}
auto float_options = torch::TensorOptions().dtype(torch::kFloat32).requires_grad(false);
auto barycentric = torch::zeros({height, width, 3}, float_options);
for (int i = 0; i < width * height; ++i)
barycentricFromImgcoordCPU(V.data_ptr<float>(), F.data_ptr<int>(),
findices.data_ptr<int>(), (INT64*)z_min.data_ptr<long>(), width, height, num_vertices, num_faces, barycentric.data_ptr<float>(), i);
return {findices, barycentric};
}
std::vector<torch::Tensor> rasterize_image(torch::Tensor V, torch::Tensor F, torch::Tensor D,
int width, int height, float occlusion_truncation, int use_depth_prior)
{
int device_id = V.get_device();
if (device_id == -1)
return rasterize_image_cpu(V, F, D, width, height, occlusion_truncation, use_depth_prior);
else
return rasterize_image_gpu(V, F, D, width, height, occlusion_truncation, use_depth_prior);
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("rasterize_image", &rasterize_image, "Custom image rasterization");
m.def("build_hierarchy", &build_hierarchy, "Custom image rasterization");
m.def("build_hierarchy_with_feat", &build_hierarchy_with_feat, "Custom image rasterization");
}