Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			L40S
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			L40S
	| #!/usr/bin/env python3 | |
| # Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
| # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
| # | |
| # -------------------------------------------------------- | |
| # Script to pre-process the CO3D dataset. | |
| # Usage: | |
| # python3 datasets_preprocess/preprocess_co3d.py --co3d_dir /path/to/co3d | |
| # -------------------------------------------------------- | |
| import argparse | |
| import random | |
| import gzip | |
| import json | |
| import os | |
| import os.path as osp | |
| import torch | |
| import PIL.Image | |
| import numpy as np | |
| import cv2 | |
| from tqdm.auto import tqdm | |
| import matplotlib.pyplot as plt | |
| import path_to_root # noqa | |
| import dust3r.datasets.utils.cropping as cropping # noqa | |
| CATEGORIES = [ | |
| "apple", "backpack", "ball", "banana", "baseballbat", "baseballglove", | |
| "bench", "bicycle", "book", "bottle", "bowl", "broccoli", "cake", "car", "carrot", | |
| "cellphone", "chair", "couch", "cup", "donut", "frisbee", "hairdryer", "handbag", | |
| "hotdog", "hydrant", "keyboard", "kite", "laptop", "microwave", | |
| "motorcycle", | |
| "mouse", "orange", "parkingmeter", "pizza", "plant", "remote", "sandwich", | |
| "skateboard", "stopsign", | |
| "suitcase", "teddybear", "toaster", "toilet", "toybus", | |
| "toyplane", "toytrain", "toytruck", "tv", | |
| "umbrella", "vase", "wineglass", | |
| ] | |
| CATEGORIES_IDX = {cat: i for i, cat in enumerate(CATEGORIES)} # for seeding | |
| SINGLE_SEQUENCE_CATEGORIES = sorted(set(CATEGORIES) - set(["microwave", "stopsign", "tv"])) | |
| def get_parser(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--category", type=str, default=None) | |
| parser.add_argument('--single_sequence_subset', default=False, action='store_true', | |
| help="prepare the single_sequence_subset instead.") | |
| parser.add_argument("--output_dir", type=str, default="data/co3d_processed") | |
| parser.add_argument("--co3d_dir", type=str, required=True) | |
| parser.add_argument("--num_sequences_per_object", type=int, default=50) | |
| parser.add_argument("--seed", type=int, default=42) | |
| parser.add_argument("--min_quality", type=float, default=0.5, help="Minimum viewpoint quality score.") | |
| parser.add_argument("--img_size", type=int, default=512, | |
| help=("lower dimension will be >= img_size * 3/4, and max dimension will be >= img_size")) | |
| return parser | |
| def convert_ndc_to_pinhole(focal_length, principal_point, image_size): | |
| focal_length = np.array(focal_length) | |
| principal_point = np.array(principal_point) | |
| image_size_wh = np.array([image_size[1], image_size[0]]) | |
| half_image_size = image_size_wh / 2 | |
| rescale = half_image_size.min() | |
| principal_point_px = half_image_size - principal_point * rescale | |
| focal_length_px = focal_length * rescale | |
| fx, fy = focal_length_px[0], focal_length_px[1] | |
| cx, cy = principal_point_px[0], principal_point_px[1] | |
| K = np.array([[fx, 0.0, cx], [0.0, fy, cy], [0.0, 0.0, 1.0]], dtype=np.float32) | |
| return K | |
| def opencv_from_cameras_projection(R, T, focal, p0, image_size): | |
| R = torch.from_numpy(R)[None, :, :] | |
| T = torch.from_numpy(T)[None, :] | |
| focal = torch.from_numpy(focal)[None, :] | |
| p0 = torch.from_numpy(p0)[None, :] | |
| image_size = torch.from_numpy(image_size)[None, :] | |
| R_pytorch3d = R.clone() | |
| T_pytorch3d = T.clone() | |
| focal_pytorch3d = focal | |
| p0_pytorch3d = p0 | |
| T_pytorch3d[:, :2] *= -1 | |
| R_pytorch3d[:, :, :2] *= -1 | |
| tvec = T_pytorch3d | |
| R = R_pytorch3d.permute(0, 2, 1) | |
| # Retype the image_size correctly and flip to width, height. | |
| image_size_wh = image_size.to(R).flip(dims=(1,)) | |
| # NDC to screen conversion. | |
| scale = image_size_wh.to(R).min(dim=1, keepdim=True)[0] / 2.0 | |
| scale = scale.expand(-1, 2) | |
| c0 = image_size_wh / 2.0 | |
| principal_point = -p0_pytorch3d * scale + c0 | |
| focal_length = focal_pytorch3d * scale | |
| camera_matrix = torch.zeros_like(R) | |
| camera_matrix[:, :2, 2] = principal_point | |
| camera_matrix[:, 2, 2] = 1.0 | |
| camera_matrix[:, 0, 0] = focal_length[:, 0] | |
| camera_matrix[:, 1, 1] = focal_length[:, 1] | |
| return R[0], tvec[0], camera_matrix[0] | |
| def get_set_list(category_dir, split, is_single_sequence_subset=False): | |
| listfiles = os.listdir(osp.join(category_dir, "set_lists")) | |
| if is_single_sequence_subset: | |
| # not all objects have manyview_dev | |
| subset_list_files = [f for f in listfiles if "manyview_dev" in f] | |
| else: | |
| subset_list_files = [f for f in listfiles if f"fewview_train" in f] | |
| sequences_all = [] | |
| for subset_list_file in subset_list_files: | |
| with open(osp.join(category_dir, "set_lists", subset_list_file)) as f: | |
| subset_lists_data = json.load(f) | |
| sequences_all.extend(subset_lists_data[split]) | |
| return sequences_all | |
| def prepare_sequences(category, co3d_dir, output_dir, img_size, split, min_quality, max_num_sequences_per_object, | |
| seed, is_single_sequence_subset=False): | |
| random.seed(seed) | |
| category_dir = osp.join(co3d_dir, category) | |
| category_output_dir = osp.join(output_dir, category) | |
| sequences_all = get_set_list(category_dir, split, is_single_sequence_subset) | |
| sequences_numbers = sorted(set(seq_name for seq_name, _, _ in sequences_all)) | |
| frame_file = osp.join(category_dir, "frame_annotations.jgz") | |
| sequence_file = osp.join(category_dir, "sequence_annotations.jgz") | |
| with gzip.open(frame_file, "r") as fin: | |
| frame_data = json.loads(fin.read()) | |
| with gzip.open(sequence_file, "r") as fin: | |
| sequence_data = json.loads(fin.read()) | |
| frame_data_processed = {} | |
| for f_data in frame_data: | |
| sequence_name = f_data["sequence_name"] | |
| frame_data_processed.setdefault(sequence_name, {})[f_data["frame_number"]] = f_data | |
| good_quality_sequences = set() | |
| for seq_data in sequence_data: | |
| if seq_data["viewpoint_quality_score"] > min_quality: | |
| good_quality_sequences.add(seq_data["sequence_name"]) | |
| sequences_numbers = [seq_name for seq_name in sequences_numbers if seq_name in good_quality_sequences] | |
| if len(sequences_numbers) < max_num_sequences_per_object: | |
| selected_sequences_numbers = sequences_numbers | |
| else: | |
| selected_sequences_numbers = random.sample(sequences_numbers, max_num_sequences_per_object) | |
| selected_sequences_numbers_dict = {seq_name: [] for seq_name in selected_sequences_numbers} | |
| sequences_all = [(seq_name, frame_number, filepath) | |
| for seq_name, frame_number, filepath in sequences_all | |
| if seq_name in selected_sequences_numbers_dict] | |
| for seq_name, frame_number, filepath in tqdm(sequences_all): | |
| frame_idx = int(filepath.split('/')[-1][5:-4]) | |
| selected_sequences_numbers_dict[seq_name].append(frame_idx) | |
| mask_path = filepath.replace("images", "masks").replace(".jpg", ".png") | |
| frame_data = frame_data_processed[seq_name][frame_number] | |
| focal_length = frame_data["viewpoint"]["focal_length"] | |
| principal_point = frame_data["viewpoint"]["principal_point"] | |
| image_size = frame_data["image"]["size"] | |
| K = convert_ndc_to_pinhole(focal_length, principal_point, image_size) | |
| R, tvec, camera_intrinsics = opencv_from_cameras_projection(np.array(frame_data["viewpoint"]["R"]), | |
| np.array(frame_data["viewpoint"]["T"]), | |
| np.array(focal_length), | |
| np.array(principal_point), | |
| np.array(image_size)) | |
| frame_data = frame_data_processed[seq_name][frame_number] | |
| depth_path = os.path.join(co3d_dir, frame_data["depth"]["path"]) | |
| assert frame_data["depth"]["scale_adjustment"] == 1.0 | |
| image_path = os.path.join(co3d_dir, filepath) | |
| mask_path_full = os.path.join(co3d_dir, mask_path) | |
| input_rgb_image = PIL.Image.open(image_path).convert('RGB') | |
| input_mask = plt.imread(mask_path_full) | |
| with PIL.Image.open(depth_path) as depth_pil: | |
| # the image is stored with 16-bit depth but PIL reads it as I (32 bit). | |
| # we cast it to uint16, then reinterpret as float16, then cast to float32 | |
| input_depthmap = ( | |
| np.frombuffer(np.array(depth_pil, dtype=np.uint16), dtype=np.float16) | |
| .astype(np.float32) | |
| .reshape((depth_pil.size[1], depth_pil.size[0]))) | |
| depth_mask = np.stack((input_depthmap, input_mask), axis=-1) | |
| H, W = input_depthmap.shape | |
| camera_intrinsics = camera_intrinsics.numpy() | |
| cx, cy = camera_intrinsics[:2, 2].round().astype(int) | |
| min_margin_x = min(cx, W - cx) | |
| min_margin_y = min(cy, H - cy) | |
| # the new window will be a rectangle of size (2*min_margin_x, 2*min_margin_y) centered on (cx,cy) | |
| l, t = cx - min_margin_x, cy - min_margin_y | |
| r, b = cx + min_margin_x, cy + min_margin_y | |
| crop_bbox = (l, t, r, b) | |
| input_rgb_image, depth_mask, input_camera_intrinsics = cropping.crop_image_depthmap( | |
| input_rgb_image, depth_mask, camera_intrinsics, crop_bbox) | |
| # try to set the lower dimension to img_size * 3/4 -> img_size=512 => 384 | |
| scale_final = ((img_size * 3 // 4) / min(H, W)) + 1e-8 | |
| output_resolution = np.floor(np.array([W, H]) * scale_final).astype(int) | |
| if max(output_resolution) < img_size: | |
| # let's put the max dimension to img_size | |
| scale_final = (img_size / max(H, W)) + 1e-8 | |
| output_resolution = np.floor(np.array([W, H]) * scale_final).astype(int) | |
| input_rgb_image, depth_mask, input_camera_intrinsics = cropping.rescale_image_depthmap( | |
| input_rgb_image, depth_mask, input_camera_intrinsics, output_resolution) | |
| input_depthmap = depth_mask[:, :, 0] | |
| input_mask = depth_mask[:, :, 1] | |
| # generate and adjust camera pose | |
| camera_pose = np.eye(4, dtype=np.float32) | |
| camera_pose[:3, :3] = R | |
| camera_pose[:3, 3] = tvec | |
| camera_pose = np.linalg.inv(camera_pose) | |
| # save crop images and depth, metadata | |
| save_img_path = os.path.join(output_dir, filepath) | |
| save_depth_path = os.path.join(output_dir, frame_data["depth"]["path"]) | |
| save_mask_path = os.path.join(output_dir, mask_path) | |
| os.makedirs(os.path.split(save_img_path)[0], exist_ok=True) | |
| os.makedirs(os.path.split(save_depth_path)[0], exist_ok=True) | |
| os.makedirs(os.path.split(save_mask_path)[0], exist_ok=True) | |
| input_rgb_image.save(save_img_path) | |
| scaled_depth_map = (input_depthmap / np.max(input_depthmap) * 65535).astype(np.uint16) | |
| cv2.imwrite(save_depth_path, scaled_depth_map) | |
| cv2.imwrite(save_mask_path, (input_mask * 255).astype(np.uint8)) | |
| save_meta_path = save_img_path.replace('jpg', 'npz') | |
| np.savez(save_meta_path, camera_intrinsics=input_camera_intrinsics, | |
| camera_pose=camera_pose, maximum_depth=np.max(input_depthmap)) | |
| return selected_sequences_numbers_dict | |
| if __name__ == "__main__": | |
| parser = get_parser() | |
| args = parser.parse_args() | |
| assert args.co3d_dir != args.output_dir | |
| if args.category is None: | |
| if args.single_sequence_subset: | |
| categories = SINGLE_SEQUENCE_CATEGORIES | |
| else: | |
| categories = CATEGORIES | |
| else: | |
| categories = [args.category] | |
| os.makedirs(args.output_dir, exist_ok=True) | |
| for split in ['train', 'test']: | |
| selected_sequences_path = os.path.join(args.output_dir, f'selected_seqs_{split}.json') | |
| if os.path.isfile(selected_sequences_path): | |
| continue | |
| all_selected_sequences = {} | |
| for category in categories: | |
| category_output_dir = osp.join(args.output_dir, category) | |
| os.makedirs(category_output_dir, exist_ok=True) | |
| category_selected_sequences_path = os.path.join(category_output_dir, f'selected_seqs_{split}.json') | |
| if os.path.isfile(category_selected_sequences_path): | |
| with open(category_selected_sequences_path, 'r') as fid: | |
| category_selected_sequences = json.load(fid) | |
| else: | |
| print(f"Processing {split} - category = {category}") | |
| category_selected_sequences = prepare_sequences( | |
| category=category, | |
| co3d_dir=args.co3d_dir, | |
| output_dir=args.output_dir, | |
| img_size=args.img_size, | |
| split=split, | |
| min_quality=args.min_quality, | |
| max_num_sequences_per_object=args.num_sequences_per_object, | |
| seed=args.seed + CATEGORIES_IDX[category], | |
| is_single_sequence_subset=args.single_sequence_subset | |
| ) | |
| with open(category_selected_sequences_path, 'w') as file: | |
| json.dump(category_selected_sequences, file) | |
| all_selected_sequences[category] = category_selected_sequences | |
| with open(selected_sequences_path, 'w') as file: | |
| json.dump(all_selected_sequences, file) | |