Spaces:
Running
on
L40S
Running
on
L40S
# Copyright (C) 2022-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# -------------------------------------------------------- | |
# Main test function | |
# -------------------------------------------------------- | |
import os | |
import argparse | |
import pickle | |
from PIL import Image | |
import numpy as np | |
from tqdm import tqdm | |
import torch | |
from torch.utils.data import DataLoader | |
import utils.misc as misc | |
from models.croco_downstream import CroCoDownstreamBinocular | |
from models.head_downstream import PixelwiseTaskWithDPT | |
from stereoflow.criterion import * | |
from stereoflow.datasets_stereo import get_test_datasets_stereo | |
from stereoflow.datasets_flow import get_test_datasets_flow | |
from stereoflow.engine import tiled_pred | |
from stereoflow.datasets_stereo import vis_disparity | |
from stereoflow.datasets_flow import flowToColor | |
def get_args_parser(): | |
parser = argparse.ArgumentParser('Test CroCo models on stereo/flow', add_help=False) | |
# important argument | |
parser.add_argument('--model', required=True, type=str, help='Path to the model to evaluate') | |
parser.add_argument('--dataset', required=True, type=str, help="test dataset (there can be multiple dataset separated by a +)") | |
# tiling | |
parser.add_argument('--tile_conf_mode', type=str, default='', help='Weights for the tiling aggregation based on confidence (empty means use the formula from the loaded checkpoint') | |
parser.add_argument('--tile_overlap', type=float, default=0.7, help='overlap between tiles') | |
# save (it will automatically go to <model_path>_<dataset_str>/<tile_str>_<save>) | |
parser.add_argument('--save', type=str, nargs='+', default=[], | |
help='what to save: \ | |
metrics (pickle file), \ | |
pred (raw prediction save as torch tensor), \ | |
visu (visualization in png of each prediction), \ | |
err10 (visualization in png of the error clamp at 10 for each prediction), \ | |
submission (submission file)') | |
# other (no impact) | |
parser.add_argument('--num_workers', default=4, type=int) | |
return parser | |
def _load_model_and_criterion(model_path, do_load_metrics, device): | |
print('loading model from', model_path) | |
assert os.path.isfile(model_path) | |
ckpt = torch.load(model_path, 'cpu') | |
ckpt_args = ckpt['args'] | |
task = ckpt_args.task | |
tile_conf_mode = ckpt_args.tile_conf_mode | |
num_channels = {'stereo': 1, 'flow': 2}[task] | |
with_conf = eval(ckpt_args.criterion).with_conf | |
if with_conf: num_channels += 1 | |
print('head: PixelwiseTaskWithDPT()') | |
head = PixelwiseTaskWithDPT() | |
head.num_channels = num_channels | |
print('croco_args:', ckpt_args.croco_args) | |
model = CroCoDownstreamBinocular(head, **ckpt_args.croco_args) | |
msg = model.load_state_dict(ckpt['model'], strict=True) | |
model.eval() | |
model = model.to(device) | |
if do_load_metrics: | |
if task=='stereo': | |
metrics = StereoDatasetMetrics().to(device) | |
else: | |
metrics = FlowDatasetMetrics().to(device) | |
else: | |
metrics = None | |
return model, metrics, ckpt_args.crop, with_conf, task, tile_conf_mode | |
def _save_batch(pred, gt, pairnames, dataset, task, save, outdir, time, submission_dir=None): | |
for i in range(len(pairnames)): | |
pairname = eval(pairnames[i]) if pairnames[i].startswith('(') else pairnames[i] # unbatch pairname | |
fname = os.path.join(outdir, dataset.pairname_to_str(pairname)) | |
os.makedirs(os.path.dirname(fname), exist_ok=True) | |
predi = pred[i,...] | |
if gt is not None: gti = gt[i,...] | |
if 'pred' in save: | |
torch.save(predi.squeeze(0).cpu(), fname+'_pred.pth') | |
if 'visu' in save: | |
if task=='stereo': | |
disparity = predi.permute((1,2,0)).squeeze(2).cpu().numpy() | |
m,M = None | |
if gt is not None: | |
mask = torch.isfinite(gti) | |
m = gt[mask].min() | |
M = gt[mask].max() | |
img_disparity = vis_disparity(disparity, m=m, M=M) | |
Image.fromarray(img_disparity).save(fname+'_pred.png') | |
else: | |
# normalize flowToColor according to the maxnorm of gt (or prediction if not available) | |
flowNorm = torch.sqrt(torch.sum( (gti if gt is not None else predi)**2, dim=0)).max().item() | |
imgflow = flowToColor(predi.permute((1,2,0)).cpu().numpy(), maxflow=flowNorm) | |
Image.fromarray(imgflow).save(fname+'_pred.png') | |
if 'err10' in save: | |
assert gt is not None | |
L2err = torch.sqrt(torch.sum( (gti-predi)**2, dim=0)) | |
valid = torch.isfinite(gti[0,:,:]) | |
L2err[~valid] = 0.0 | |
L2err = torch.clamp(L2err, max=10.0) | |
red = (L2err*255.0/10.0).to(dtype=torch.uint8)[:,:,None] | |
zer = torch.zeros_like(red) | |
imgerr = torch.cat( (red,zer,zer), dim=2).cpu().numpy() | |
Image.fromarray(imgerr).save(fname+'_err10.png') | |
if 'submission' in save: | |
assert submission_dir is not None | |
predi_np = predi.permute(1,2,0).squeeze(2).cpu().numpy() # transform into HxWx2 for flow or HxW for stereo | |
dataset.submission_save_pairname(pairname, predi_np, submission_dir, time) | |
def main(args): | |
# load the pretrained model and metrics | |
device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu') | |
model, metrics, cropsize, with_conf, task, tile_conf_mode = _load_model_and_criterion(args.model, 'metrics' in args.save, device) | |
if args.tile_conf_mode=='': args.tile_conf_mode = tile_conf_mode | |
# load the datasets | |
datasets = (get_test_datasets_stereo if task=='stereo' else get_test_datasets_flow)(args.dataset) | |
dataloaders = [DataLoader(dataset, batch_size=1, shuffle=False, num_workers=args.num_workers, pin_memory=True, drop_last=False) for dataset in datasets] | |
# run | |
for i,dataloader in enumerate(dataloaders): | |
dataset = datasets[i] | |
dstr = args.dataset.split('+')[i] | |
outdir = args.model+'_'+misc.filename(dstr) | |
if 'metrics' in args.save and len(args.save)==1: | |
fname = os.path.join(outdir, f'conf_{args.tile_conf_mode}_overlap_{args.tile_overlap}.pkl') | |
if os.path.isfile(fname) and len(args.save)==1: | |
print(' metrics already compute in '+fname) | |
with open(fname, 'rb') as fid: | |
results = pickle.load(fid) | |
for k,v in results.items(): | |
print('{:s}: {:.3f}'.format(k, v)) | |
continue | |
if 'submission' in args.save: | |
dirname = f'submission_conf_{args.tile_conf_mode}_overlap_{args.tile_overlap}' | |
submission_dir = os.path.join(outdir, dirname) | |
else: | |
submission_dir = None | |
print('') | |
print('saving {:s} in {:s}'.format('+'.join(args.save), outdir)) | |
print(repr(dataset)) | |
if metrics is not None: | |
metrics.reset() | |
for data_iter_step, (image1, image2, gt, pairnames) in enumerate(tqdm(dataloader)): | |
do_flip = (task=='stereo' and dstr.startswith('Spring') and any("right" in p for p in pairnames)) # we flip the images and will flip the prediction after as we assume img1 is on the left | |
image1 = image1.to(device, non_blocking=True) | |
image2 = image2.to(device, non_blocking=True) | |
gt = gt.to(device, non_blocking=True) if gt.numel()>0 else None # special case for test time | |
if do_flip: | |
assert all("right" in p for p in pairnames) | |
image1 = image1.flip(dims=[3]) # this is already the right frame, let's flip it | |
image2 = image2.flip(dims=[3]) | |
gt = gt # that is ok | |
with torch.inference_mode(): | |
pred, _, _, time = tiled_pred(model, None, image1, image2, None if dataset.name=='Spring' else gt, conf_mode=args.tile_conf_mode, overlap=args.tile_overlap, crop=cropsize, with_conf=with_conf, return_time=True) | |
if do_flip: | |
pred = pred.flip(dims=[3]) | |
if metrics is not None: | |
metrics.add_batch(pred, gt) | |
if any(k in args.save for k in ['pred','visu','err10','submission']): | |
_save_batch(pred, gt, pairnames, dataset, task, args.save, outdir, time, submission_dir=submission_dir) | |
if metrics is not None: | |
results = metrics.get_results() | |
for k,v in results.items(): | |
print('{:s}: {:.3f}'.format(k, v)) | |
# save if needed | |
if 'metrics' in args.save: | |
os.makedirs(os.path.dirname(fname), exist_ok=True) | |
with open(fname, 'wb') as fid: | |
pickle.dump(results, fid) | |
print('metrics saved in', fname) | |
# finalize submission if needed | |
if 'submission' in args.save: | |
dataset.finalize_submission(submission_dir) | |
if __name__ == '__main__': | |
args = get_args_parser() | |
args = args.parse_args() | |
main(args) |