Spaces:
Running
on
L40S
Running
on
L40S
| from inspect import isfunction | |
| import math | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn, einsum | |
| from einops import rearrange, repeat | |
| import numpy as np | |
| FLASH_IS_AVAILABLE = XFORMERS_IS_AVAILBLE = False | |
| try: | |
| from flash_attn import flash_attn_qkvpacked_func, flash_attn_func | |
| FLASH_IS_AVAILABLE = True | |
| except: | |
| try: | |
| import xformers | |
| import xformers.ops | |
| XFORMERS_IS_AVAILBLE = True | |
| except: | |
| pass | |
| def exists(val): | |
| return val is not None | |
| def uniq(arr): | |
| return{el: True for el in arr}.keys() | |
| def default(val, d): | |
| if exists(val): | |
| return val | |
| return d() if isfunction(d) else d | |
| def max_neg_value(t): | |
| return -torch.finfo(t.dtype).max | |
| def init_(tensor): | |
| dim = tensor.shape[-1] | |
| std = 1 / math.sqrt(dim) | |
| tensor.uniform_(-std, std) | |
| return tensor | |
| def checkpoint(func, inputs, params, flag): | |
| """ | |
| Evaluate a function without caching intermediate activations, allowing for | |
| reduced memory at the expense of extra compute in the backward pass. | |
| :param func: the function to evaluate. | |
| :param inputs: the argument sequence to pass to `func`. | |
| :param params: a sequence of parameters `func` depends on but does not | |
| explicitly take as arguments. | |
| :param flag: if False, disable gradient checkpointing. | |
| """ | |
| if flag: | |
| args = tuple(inputs) + tuple(params) | |
| return CheckpointFunction.apply(func, len(inputs), *args) | |
| else: | |
| return func(*inputs) | |
| class CheckpointFunction(torch.autograd.Function): | |
| def forward(ctx, run_function, length, *args): | |
| ctx.run_function = run_function | |
| ctx.input_tensors = list(args[:length]) | |
| ctx.input_params = list(args[length:]) | |
| with torch.no_grad(): | |
| output_tensors = ctx.run_function(*ctx.input_tensors) | |
| return output_tensors | |
| def backward(ctx, *output_grads): | |
| ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors] | |
| with torch.enable_grad(): | |
| # Fixes a bug where the first op in run_function modifies the | |
| # Tensor storage in place, which is not allowed for detach()'d | |
| # Tensors. | |
| shallow_copies = [x.view_as(x) for x in ctx.input_tensors] | |
| output_tensors = ctx.run_function(*shallow_copies) | |
| input_grads = torch.autograd.grad( | |
| output_tensors, | |
| ctx.input_tensors + ctx.input_params, | |
| output_grads, | |
| allow_unused=True, | |
| ) | |
| del ctx.input_tensors | |
| del ctx.input_params | |
| del output_tensors | |
| return (None, None) + input_grads | |
| # feedforward | |
| class GEGLU(nn.Module): | |
| def __init__(self, dim_in, dim_out): | |
| super().__init__() | |
| self.proj = nn.Linear(dim_in, dim_out * 2) | |
| def forward(self, x): | |
| x, gate = self.proj(x).chunk(2, dim=-1) | |
| return x * F.gelu(gate) | |
| class FeedForward(nn.Module): | |
| def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.): | |
| super().__init__() | |
| inner_dim = int(dim * mult) | |
| dim_out = default(dim_out, dim) | |
| project_in = nn.Sequential( | |
| nn.Linear(dim, inner_dim), | |
| nn.GELU() | |
| ) if not glu else GEGLU(dim, inner_dim) | |
| self.net = nn.Sequential( | |
| project_in, | |
| nn.Dropout(dropout), | |
| nn.Linear(inner_dim, dim_out) | |
| ) | |
| def forward(self, x): | |
| return self.net(x) | |
| def zero_module(module): | |
| """ | |
| Zero out the parameters of a module and return it. | |
| """ | |
| for p in module.parameters(): | |
| p.detach().zero_() | |
| return module | |
| def Normalize(in_channels): | |
| return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) | |
| class LinearAttention(nn.Module): | |
| def __init__(self, dim, heads=4, dim_head=32): | |
| super().__init__() | |
| self.heads = heads | |
| hidden_dim = dim_head * heads | |
| self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False) | |
| self.to_out = nn.Conv2d(hidden_dim, dim, 1) | |
| def forward(self, x): | |
| b, c, h, w = x.shape | |
| qkv = self.to_qkv(x) | |
| q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3) | |
| k = k.softmax(dim=-1) | |
| context = torch.einsum('bhdn,bhen->bhde', k, v) | |
| out = torch.einsum('bhde,bhdn->bhen', context, q) | |
| out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w) | |
| return self.to_out(out) | |
| class SpatialSelfAttention(nn.Module): | |
| def __init__(self, in_channels): | |
| super().__init__() | |
| self.in_channels = in_channels | |
| self.norm = Normalize(in_channels) | |
| self.q = torch.nn.Conv2d(in_channels, | |
| in_channels, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0) | |
| self.k = torch.nn.Conv2d(in_channels, | |
| in_channels, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0) | |
| self.v = torch.nn.Conv2d(in_channels, | |
| in_channels, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0) | |
| self.proj_out = torch.nn.Conv2d(in_channels, | |
| in_channels, | |
| kernel_size=1, | |
| stride=1, | |
| padding=0) | |
| def forward(self, x): | |
| h_ = x | |
| h_ = self.norm(h_) | |
| q = self.q(h_) | |
| k = self.k(h_) | |
| v = self.v(h_) | |
| # compute attention | |
| b,c,h,w = q.shape | |
| q = rearrange(q, 'b c h w -> b (h w) c') | |
| k = rearrange(k, 'b c h w -> b c (h w)') | |
| w_ = torch.einsum('bij,bjk->bik', q, k) | |
| w_ = w_ * (int(c)**(-0.5)) | |
| w_ = torch.nn.functional.softmax(w_, dim=2) | |
| # attend to values | |
| v = rearrange(v, 'b c h w -> b c (h w)') | |
| w_ = rearrange(w_, 'b i j -> b j i') | |
| h_ = torch.einsum('bij,bjk->bik', v, w_) | |
| h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h) | |
| h_ = self.proj_out(h_) | |
| return x+h_ | |
| class CrossAttention(nn.Module): | |
| def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): | |
| super().__init__() | |
| inner_dim = dim_head * heads | |
| context_dim = default(context_dim, query_dim) | |
| self.scale = dim_head ** -0.5 | |
| self.heads = heads | |
| self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | |
| self.to_k = nn.Linear(context_dim, inner_dim, bias=False) | |
| self.to_v = nn.Linear(context_dim, inner_dim, bias=False) | |
| self.to_out = nn.Sequential( | |
| nn.Linear(inner_dim, query_dim), | |
| nn.Dropout(dropout) | |
| ) | |
| def forward(self, x, context=None, mask=None): | |
| h = self.heads | |
| q = self.to_q(x) | |
| context = default(context, x) | |
| k = self.to_k(context) | |
| v = self.to_v(context) | |
| q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) | |
| sim = einsum('b i d, b j d -> b i j', q, k) * self.scale | |
| if exists(mask): | |
| mask = rearrange(mask, 'b ... -> b (...)') | |
| max_neg_value = -torch.finfo(sim.dtype).max | |
| mask = repeat(mask, 'b j -> (b h) () j', h=h) | |
| sim.masked_fill_(~mask, max_neg_value) | |
| # attention, what we cannot get enough of | |
| attn = sim.softmax(dim=-1) | |
| out = einsum('b i j, b j d -> b i d', attn, v) # [b*h, n, d] | |
| out = rearrange(out, '(b h) n d -> b n (h d)', h=h) | |
| return self.to_out(out) | |
| class FlashAttention(nn.Module): | |
| def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.): | |
| super().__init__() | |
| # print( | |
| # f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, " | |
| # "context_dim is {context_dim} and using " | |
| # f"{heads} heads." | |
| # ) | |
| inner_dim = dim_head * heads | |
| context_dim = default(context_dim, query_dim) | |
| self.scale = dim_head ** -0.5 | |
| self.heads = heads | |
| self.dropout = dropout | |
| self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | |
| self.to_k = nn.Linear(context_dim, inner_dim, bias=False) | |
| self.to_v = nn.Linear(context_dim, inner_dim, bias=False) | |
| self.to_out = nn.Sequential( | |
| nn.Linear(inner_dim, query_dim), | |
| nn.Dropout(dropout) | |
| ) | |
| def forward(self, x, context=None, mask=None): | |
| context = default(context, x) | |
| h = self.heads | |
| dtype = torch.bfloat16 # torch.half | |
| q = self.to_q(x).to(dtype) | |
| k = self.to_k(context).to(dtype) | |
| v = self.to_v(context).to(dtype) | |
| q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q, k, v)) # q is [b, 3079, 16, 64] | |
| out = flash_attn_func(q, k, v, | |
| dropout_p=self.dropout, | |
| softmax_scale=None, | |
| causal=False, | |
| window_size=(-1, -1) | |
| ) # out is same shape to q | |
| out = rearrange(out, 'b n h d -> b n (h d)', h=h) | |
| return self.to_out(out.float()) | |
| class MemoryEfficientCrossAttention(nn.Module): | |
| # https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223 | |
| def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0): | |
| super().__init__() | |
| # print( | |
| # f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, " | |
| # "context_dim is {context_dim} and using " | |
| # f"{heads} heads." | |
| # ) | |
| inner_dim = dim_head * heads | |
| context_dim = default(context_dim, query_dim) | |
| self.heads = heads | |
| self.dim_head = dim_head | |
| self.to_q = nn.Linear(query_dim, inner_dim, bias=False) | |
| self.to_k = nn.Linear(context_dim, inner_dim, bias=False) | |
| self.to_v = nn.Linear(context_dim, inner_dim, bias=False) | |
| self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)) | |
| self.attention_op: Optional[Any] = None | |
| def forward(self, x, context=None, mask=None): | |
| q = self.to_q(x) | |
| context = default(context, x) | |
| k = self.to_k(context) | |
| v = self.to_v(context) | |
| b, _, _ = q.shape | |
| q, k, v = map( | |
| lambda t: t.unsqueeze(3) | |
| .reshape(b, t.shape[1], self.heads, self.dim_head) | |
| .permute(0, 2, 1, 3) | |
| .reshape(b * self.heads, t.shape[1], self.dim_head) | |
| .contiguous(), | |
| (q, k, v), | |
| ) | |
| # actually compute the attention, what we cannot get enough of | |
| out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op) | |
| if exists(mask): | |
| raise NotImplementedError | |
| out = ( | |
| out.unsqueeze(0) | |
| .reshape(b, self.heads, out.shape[1], self.dim_head) | |
| .permute(0, 2, 1, 3) | |
| .reshape(b, out.shape[1], self.heads * self.dim_head) | |
| ) | |
| return self.to_out(out) | |
| class BasicTransformerBlock(nn.Module): | |
| def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True, | |
| disable_self_attn=False): | |
| super().__init__() | |
| self.disable_self_attn = disable_self_attn | |
| self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, | |
| context_dim=context_dim if self.disable_self_attn else None) | |
| # is a self-attention if not self.disable_self_attn | |
| self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) | |
| self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim, | |
| heads=n_heads, dim_head=d_head, dropout=dropout) | |
| # is self-attn if context is none | |
| self.norm1 = Fp32LayerNorm(dim) | |
| self.norm2 = Fp32LayerNorm(dim) | |
| self.norm3 = Fp32LayerNorm(dim) | |
| self.checkpoint = checkpoint | |
| def forward(self, x, context=None): | |
| return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint) | |
| def _forward(self, x, context=None): | |
| x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x | |
| x = self.attn2(self.norm2(x), context=context) + x | |
| x = self.ff(self.norm3(x)) + x | |
| return x | |
| ATTENTION_MODES = { | |
| "softmax": CrossAttention, # vanilla attention | |
| "softmax-xformers": MemoryEfficientCrossAttention, | |
| "softmax-flash": FlashAttention | |
| } | |
| def modulate(x, shift, scale): | |
| return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) | |
| class Fp32LayerNorm(nn.LayerNorm): | |
| def __init__(self, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| def forward(self, x): | |
| return super().forward(x.float()).type(x.dtype) | |
| class AdaNorm(nn.Module): | |
| def __init__(self, dim): | |
| super().__init__() | |
| self.adaLN_modulation = nn.Sequential( | |
| nn.SiLU(), | |
| nn.Linear(dim, 2 * dim, bias=True) | |
| ) | |
| self.norm = Fp32LayerNorm(dim, elementwise_affine=False, eps=1e-6) | |
| def forward(self, x, c): # x is fp32, c is fp16 | |
| shift, scale = self.adaLN_modulation(c.float()).chunk(2, dim=1) # bf16 | |
| x = modulate(self.norm(x), shift, scale) # fp32 | |
| return x | |
| class BasicTransformerBlockLRM(nn.Module): | |
| def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, \ | |
| checkpoint=True): | |
| super().__init__() | |
| attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax" | |
| attn_mode = "softmax-flash" if FLASH_IS_AVAILABLE else attn_mode | |
| assert attn_mode in ATTENTION_MODES | |
| attn_cls = ATTENTION_MODES[attn_mode] | |
| self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, \ | |
| context_dim=context_dim) # cross-attn | |
| self.attn2 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout, \ | |
| context_dim=None) # self-attn | |
| self.norm1 = Fp32LayerNorm(dim) | |
| self.norm2 = Fp32LayerNorm(dim) | |
| self.norm3 = Fp32LayerNorm(dim) | |
| self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) | |
| self.checkpoint = checkpoint | |
| def forward(self, x, context=None, cam_emb=None): # (torch.float32, torch.float32, torch.bfloat16) | |
| return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint) | |
| def _forward(self, x, context=None, cam_emb=None): | |
| x = self.attn1(self.norm1(x), context=context) + x # cross-attn | |
| x = self.attn2(self.norm2(x), context=None) + x # self-attn | |
| x = self.ff(self.norm3(x)) + x | |
| return x | |
| class ImgToTriplaneTransformer(nn.Module): | |
| """ | |
| Transformer block for image-like data. | |
| First, project the input (aka embedding) | |
| and reshape to b, t, d. | |
| Then apply standard transformer action. | |
| Finally, reshape to image | |
| """ | |
| def __init__(self, query_dim, n_heads, d_head, depth=1, dropout=0., context_dim=None, triplane_size=64): | |
| super().__init__() | |
| self.transformer_blocks = nn.ModuleList([ | |
| BasicTransformerBlockLRM(query_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim) | |
| for d in range(depth)]) | |
| self.norm = Fp32LayerNorm(query_dim, eps=1e-6) | |
| self.initialize_weights() | |
| def initialize_weights(self): | |
| # Initialize transformer layers: | |
| def _basic_init(module): | |
| if isinstance(module, nn.Linear): | |
| torch.nn.init.xavier_uniform_(module.weight) | |
| if module.bias is not None: | |
| nn.init.constant_(module.bias, 0) | |
| elif isinstance(module, nn.LayerNorm): | |
| if module.bias is not None: | |
| nn.init.constant_(module.bias, 0) | |
| if module.weight is not None: | |
| nn.init.constant_(module.weight, 1.0) | |
| self.apply(_basic_init) | |
| def forward(self, x, context=None, cam_emb=None): | |
| # note: if no context is given, cross-attention defaults to self-attention | |
| for block in self.transformer_blocks: | |
| x = block(x, context=context) | |
| x = self.norm(x) | |
| return x | |