Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import numpy as np | |
import os.path as osp | |
from PIL import Image | |
from tqdm import tqdm | |
import csv | |
import imageio | |
def _read_image(img_rel_path) -> np.ndarray: | |
image_to_read = img_rel_path | |
image = Image.open(image_to_read) | |
image = np.asarray(image) | |
return image | |
def depth_read(filename): | |
depth_in = _read_image(filename) | |
depth_decoded = depth_in / 1000.0 | |
return depth_decoded | |
def extract_nyu( | |
root, | |
depth_root, | |
csv_save_path="", | |
datatset_name="", | |
filename_ls_path="", | |
saved_rgb_dir="", | |
saved_disp_dir="", | |
): | |
with open(filename_ls_path, "r") as f: | |
filenames = [s.split() for s in f.readlines()] | |
all_samples = [] | |
for i, pair_names in enumerate(tqdm(filenames)): | |
img_name = pair_names[0] | |
filled_depth_name = pair_names[2] | |
im_path = osp.join(root, img_name) | |
depth_path = osp.join(depth_root, filled_depth_name) | |
depth = depth_read(depth_path) | |
disp = depth | |
video_depths = [disp] | |
video_imgs = [np.array(Image.open(im_path))] | |
disp_video = np.array(video_depths)[:, None] | |
img_video = np.array(video_imgs)[..., 0:3] | |
disp_video = disp_video[:, :, 45:471, 41:601] | |
img_video = img_video[:, 45:471, 41:601, :] | |
data_root = saved_rgb_dir + datatset_name | |
disp_root = saved_disp_dir + datatset_name | |
os.makedirs(data_root, exist_ok=True) | |
os.makedirs(disp_root, exist_ok=True) | |
img_video_dir = data_root | |
disp_video_dir = disp_root | |
img_video_path = os.path.join(img_video_dir, f"{img_name[:-4]}_rgb_left.mp4") | |
disp_video_path = os.path.join(disp_video_dir, f"{img_name[:-4]}_disparity.npz") | |
dir_name = os.path.dirname(img_video_path) | |
os.makedirs(dir_name, exist_ok=True) | |
dir_name = os.path.dirname(disp_video_path) | |
os.makedirs(dir_name, exist_ok=True) | |
imageio.mimsave( | |
img_video_path, img_video, fps=15, quality=10, macro_block_size=1 | |
) | |
np.savez(disp_video_path, disparity=disp_video) | |
sample = {} | |
sample["filepath_left"] = os.path.join( | |
f"{datatset_name}/{img_name[:-4]}_rgb_left.mp4" | |
) | |
sample["filepath_disparity"] = os.path.join( | |
f"{datatset_name}/{img_name[:-4]}_disparity.npz" | |
) | |
all_samples.append(sample) | |
filename_ = csv_save_path | |
os.makedirs(os.path.dirname(filename_), exist_ok=True) | |
fields = ["filepath_left", "filepath_disparity"] | |
with open(filename_, "w") as csvfile: | |
writer = csv.DictWriter(csvfile, fieldnames=fields) | |
writer.writeheader() | |
writer.writerows(all_samples) | |
print(f"{filename_} has been saved.") | |
if __name__ == "__main__": | |
extract_nyu( | |
root="path/to/NYUv2/", | |
depth_root="path/to/NYUv2/", | |
filename_ls_path="path/to/NYUv2/filename_list_test.txt", | |
saved_rgb_dir="./benchmark/datasets/", | |
saved_disp_dir="./benchmark/datasets/", | |
csv_save_path=f"./benchmark/datasets/NYUv2.csv", | |
datatset_name="NYUv2", | |
) | |