orator / gpt_class.py
temporary0-0name's picture
Update gpt_class.py
b19ff7e verified
raw
history blame
14.5 kB
import inspect
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
from hellaswag import render_example, iterate_examples
# --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
# From original transformer model gpt2 only have decoder part and also the cross-attention is not used.
# Also there's reshuffling layer-norms and Additional Layer normalization is added right before the soft-max layer.
class CausalSelfAttention(nn.Module): # this class combined the self-attention mechanism and multi-head attention mechanism in one class
def __init__(self, config):
super().__init__()
assert config.n_embd % config.n_head == 0 # n_emb is the embedding size and n_head is the number of heads in the multi-head attention mechanism
# (so the embedding size should be divisible by the number of heads)
self.c_attn = nn.Linear(config.n_embd, 3*config.n_embd) # Linear layer for the query, key and value projections for all heads, but in batch
self.c_proj = nn.Linear(config.n_embd, config.n_embd) # Linear layer for the final output projection
self.c_proj.NANOGPT_SCALE_INIT = 1 # Scaling the initialization of the output projection
# Regularization
self.n_head = config.n_head
self.n_embd = config.n_embd
# self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1,1,config.block_size, config.block_size)) # Lower triangular matrix for masking future tokens
def forward(self,x):
B, T, C = x.size() # batch size, Sequence length, Embedding dimensionality (n_embd)
# calculate query, key, values for all heads in batch and move head forward to be the batch dimension
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
# eg: in GPT-2 (124M), n_head=12, hs=64, so nh*hs = C = 768 channels in Transformer (channels is also called as hidden size)
qkv = self.c_attn(x) # qkv is the query, key and value projections for all heads
q,k,v = qkv.split(self.n_embd, dim=2) # Splitting the qkv into query, key and value projections
k = k.view(B,T,self.n_head, C//self.n_head).transpose(1,2) # Splitting the key into the number of heads and transposing it (B,nh,T,hs)
q = q.view(B,T,self.n_head, C//self.n_head).transpose(1,2) # Splitting the key into the number of heads and transposing it (B,nh,T,hs)
v = v.view(B,T,self.n_head, C//self.n_head).transpose(1,2) # Splitting the key into the number of heads and transposing it (B,nh,T,hs)
# attention (materializes the large (T,T) matrix for all queries and keys)
# att = (q@k.transpose(-2,-1))*(1.0 / math.sqrt(k.size(-1))) # Multiplying the query and key and scaling it by the square root of the key size
# att = att.masked_fill(self.bias[:,:,:T,:T]==0, float('-inf')) # Masking the future tokens
# att = F.softmax(att, dim=-1) # Softmax over the last dimension
# y = att@v # Multiplying the attention weights with the values (B,nh,T,T) x (B,nh,T,hs) = (B,nh,T,hs)
# Attention on GPT2: ( matmul + mask + softmax + dropout + matmul ) ==> 15ms
# Flash Attention: Fused Kernel ==> 2.5ms
y = F.scaled_dot_product_attention(q, k, v, is_causal=True)
y = y.transpose(1,2).contiguous().view(B,T,C) # re-assemble all head outputs side by side
# Output Projection
y = self.c_proj(y) # Projecting the output to the original size
return y
class MLP(nn.Module):
def __init__(self, config):
super().__init__() # Inheriting from the parent class nn.Module
self.c_fc = nn.Linear(config.n_embd, 4*config.n_embd) # Fully connected layer for the first part of the MLP which takes the input and projects it to 4 times the size of the input
self.gelu = nn.GELU(approximate='tanh') # GELU activation function
self.c_proj = nn.Linear(4*config.n_embd, config.n_embd) # Fully connected layer for the second part of the MLP which projects the output of the previous layer to the original size
self.c_proj.NANOGPT_SCALE_INIT = 1 # Scaling the initialization of the output projection
def forward(self,x):
x = self.c_fc(x)
x = self.gelu(x)
x = self.c_proj(x)
return x
# Block is basically a transformer block which consists of a self-attention mechanism and a feed-forward neural network (decoder part)
class Block(nn.Module):
def __init__(self,config):
super().__init__()
self.ln_1 = nn.LayerNorm(config.n_embd) # Layer normalization before the self-attention
self.attn = CausalSelfAttention(config) # Self-attention mechanism
self.ln_2 = nn.LayerNorm(config.n_embd) # Layer normalization after the self-attention
self.mlp = MLP(config) # Multi-layer perceptron for each position
# forward pass of the block, the input x is the sequence of embeddings and return is the updated sequence of embeddings
def forward(self,x):
x = x + self.attn(self.ln_1(x)) # residual connection followed by self-attention
# Our text first goes to ln_1, then to the self-attention mechanism, then to ln_2, and finally to the MLP
x = x + self.mlp(self.ln_2(x)) # residual connection followed by MLP (ffn)
# In attention 1024 sequence lined up communicated with each other & exchange info.
# Whereas MLP happens to every single token individually and there's no communication between tokens or exchange of information between tokens.
return x
@dataclass
class GPTConfig:
# block_size: int = 256 # maximum sequence length
# vocab_size: int = 50257 # number of tokens in the vocabulary i.e. 50,000 BPE merges + 256 byte tokens + 1 <|endoftext|> token
# n_layer: int = 12 # number of transformer layers
# n_head: int = 12 # number of heads in the multi-head attention mechanism
# n_embd: int = 768 # embedding dimension of each token
# # changed the default values of the parameters
block_size: int = 256 # maximum sequence length
vocab_size: int = 50257 # number of tokens in the vocabulary i.e. 50,000 BPE merges + 256 byte tokens + 1 <|endoftext|> token
n_layer: int = 6 # number of transformer layers
n_head: int = 6 # number of heads in the multi-head attention mechanism
n_embd: int = 768 # embedding dimension of each token
class GPT(nn.Module): # Kind of skeleton of the model
def __init__(self,config):
super().__init__()
self.config = config
# transformer is the main container and it have further sub-modules like wte, wpe, h, ln_f
self.transformer = nn.ModuleDict(dict(
wte = nn.Embedding(config.vocab_size, config.n_embd), # token embedding weights
wpe = nn.Embedding(config.block_size, config.n_embd), # positional embedding weights
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), # transformer blocks as a list of n_layer (h is hidden layer)
ln_f = nn.LayerNorm(config.n_embd), # final layer normalization before the softmax
))
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias = False) # language model head is a linear layer with vocab_size output
# Weight sharing scheme
self.transformer.wte.weight = self.lm_head.weight # weight tying the token embeddings with the pre-softmax linear transformation, using this we saved 40m parameters
# init parameters
self.apply(self._init_weights) # initializing the weights of the model
def _init_weights(self, module):
if isinstance(module, nn.Linear):
std = 0.02
if hasattr(module, 'NANOGPT_SCALE_INIT'):
std *= (2*self.config.n_layer)**-0.5 # scale by the number of layers
torch.nn.init.normal_(module.weight, mean=0.0, std = std) # initializing the weights of the linear layer with normal distribution
if module.bias is not None:
torch.nn.init.zeros_(module.bias) # initializing the bias of the linear layer with zeros
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(self,idx, targets= None):
# idx is of shape [batch_size, sequence_length] (B,T)
B,T = idx.size() # batch size and sequence length
assert T<=self.config.block_size ,f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
# forward the token and position embeddings
pos = torch.arange(0, T, dtype = torch.long, device =idx.device) # tensor of shape [T]
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B,T,n_embd)
x = tok_emb + pos_emb
# forward the blocks of the transformer
for block in self.transformer.h:
x = block(x)
# Forward the final layernorm and the classifier
x = self.transformer.ln_f(x)
logits = self.lm_head(x) # (B,T,vocab_size)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1)) # Cross-entropy flattens out the 3D (B,T,vocab_size) tensor to 2D
# (B*T,vocab_size) tensor, It also flattens out the target tensor to 1D tensor
return logits , loss
@classmethod
def from_pretrained(cls, model_type):
"""Load pretrained GPT2 model weights from huggingface"""
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'} # Checking if the model type is valid
print("Loading weights from pretrained gpt: %s" %model_type)
from transformers import GPT2LMHeadModel
# n_layer, n_head, and n_embd are determined by the model type
config_args = {
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M parameters
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M parameters
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M parameters
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M parameters
}[model_type]
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoint
# create a from-scratch initialized minGPT model
config = GPTConfig(**config_args)
model = GPT(config)
sd = model.state_dict() # state_dict is the model weights
sd_keys = sd.keys() # keys are the names of the weights
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer key, not parameters of the model
# init a huggingface/transformers model
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
sd_hf = model_hf.state_dict()
# copy while ensuring all of the parameters are aligned correctly and matches in names and shapes
sd_keys_hf = sd_hf.keys()
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
# this means that we have to transpose these weights when we import them
# missing in sd_keys: lm_head.weight
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
for k in sd_keys_hf:
if any(k.endswith(w) for w in transposed):
# special treatment for the Conv1D weights we need to transpose
assert sd_hf[k].shape[::-1] == sd[k].shape
with torch.no_grad():
sd[k].copy_(sd_hf[k].t())
else:
# vanilla copy over the other parameters
assert sd_hf[k].shape == sd[k].shape
with torch.no_grad():
sd[k].copy_(sd_hf[k])
return model # return the model with the pretrained weights
def configure_optimizers(self, weight_decay, learning_rate, device_type):
# start with all of the candidate parameters (that require gradients)
param_dict = {pn: p for pn, p in self.named_parameters()} # named parameters
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad} # only parameters that require gradients
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
# i.e. all weight tensors in matmuls + embeddings, all biases and layernorm don't.
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2] # weight tensors in matmuls + embeddings
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2] # biases and layernorm
optim_groups = [
{'params': decay_params, 'weight_decay': weight_decay},
{'params': nodecay_params, 'weight_decay': 0.0}
]
num_decay_params = sum(p.numel() for p in decay_params)
num_nodecay_params = sum(p.numel() for p in nodecay_params)
if master_process:
print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
# Create AdamW optimizer and use the fused version if it is available
fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters # check if fused is available in AdamW
use_fused = fused_available and device_type == "cuda"
if master_process:
print(f"using fused AdamW: {use_fused}")
optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=(0.9, 0.95), eps=1e-8, fused=use_fused)
return optimizer